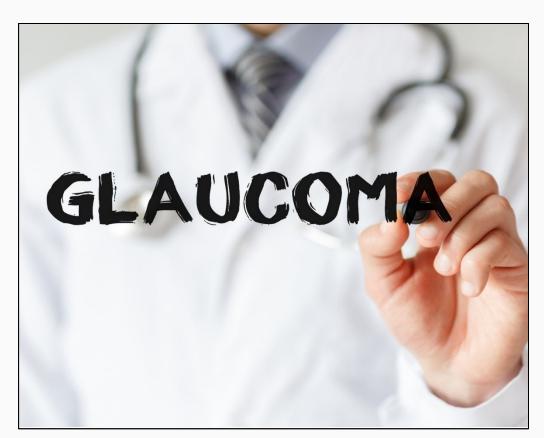
Rick Trevino, OD, FAAO Indiana University School of Optometry


Contact Me

– rctrevin@iu.edu

Online Notes

– richardtrevino.net

- Disclosures
 - None

Clinical Decisions in Glaucoma

SECOND EDITION

https://go.iu.edu/4QsN

TA CHEN CHANG, M.D.

Bascom Palmer Eye Institute Department of Ophthalmology University of Miami School of Medicine

PRADEEP RAMULU, M.D., M.H.S., PH.D.

Wilmer Eye Institute Department of Ophthalmology The Johns Hopkins University School of Medicine

ELIZABETH HODAPP, M.D.

Bascom Palmer Eye Institute Department of Ophthalmology University of Miami School of Medicine

AMERICAN ACADEMY OF OPHTHALMOLOGY®

Protecting Sight. Empowering Lives.*

Primary Open-Angle Glaucoma Preferred Practice Pattern®

Welcome to the Iowa Glaucoma Curriculum

About the Iowa Glaucoma Curriculum

This is a teaching site for residents and others interested in learning about glaucoma.

It breaks glaucoma into fifty bite-sized lectures that average 14 minutes in length (range 4 to 37 minutes). In total the curriculum is just under 12 hours long.

It is highly visual with >900 images and >90 movie clips.

Taking care of glaucoma can be very hard, but I am hoping that I have made learning about this family of diseases somewhat easier.

READ MORE

iowaglaucoma.org

Factors Affecting OCT Detection of Glaucoma

Differential Diagnosis of Normal Tension Glaucoma

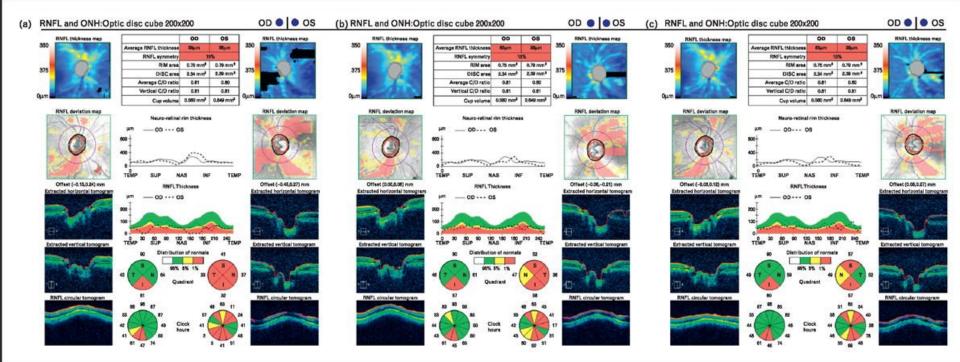
False Positive Diagnosis of Glaucoma

Factors Affecting OCT Detection of Glaucoma

Rick Trevino, OD, FAAO Indiana University School of Optometry

Glaucoma versus red disease: imaging and glaucoma diagnosis

Gabriel T. Chong and Richard K. Lee


PMID: 22262083

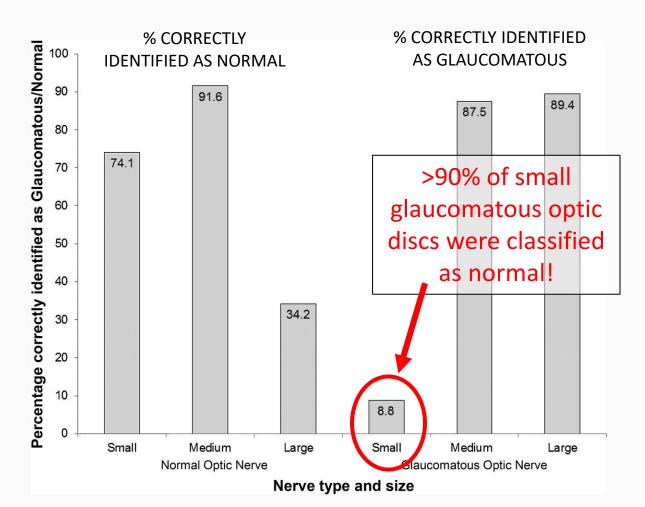
Purpose of review

JRRENT

PINION

The use of ophthalmic imaging for documentation and diagnosis of ocular disease is rising dramatically. Optical coherence tomography (OCT), confocal scanning laser tomography (CSLT), scanning laser polarimetry (SLP) and photographic imaging of the optic nerve head (ONH) are currently used to document baseline characteristics of the ONH and for diagnosing algucoma and algucoma

Evaluation of the ONH in Glaucoma


- Physiologic variation in optic disc size
- -Cup to disc ratio
- -Loss of rim tissue
- Disc hemorrhage
- Peripapillary atrophy
- Retinal nerve fiber layer atrophy

Vertical			\bigcirc	0			
Height	2.4	2.2	2.0	1.8	1.6		
Expected C/D Ratio	0.8	0.6	0.4	0.2	0.0		
Classification	LARGE	←	MEDIUM	\leftarrow	SMALL		
	2 SD	1 SD		1 SD	2 SD		

Assessment of disc size is the first step in assessment of optic cup size.

Because the axonal tissue entering the optic disc varies much less than the size of the optic disc itself, the optic cup in the center of the disc can vary a greatly without necessarily reflecting any underlying deficit in the number of ganglion cell axons Numerous studies have documented the difficulty of correctly identifying glaucomatous damage in small optic discs

Nixon (2017): Doctors examined stereophotos of optic nerve heads and were asked to classify them as normal or glaucomatous

Percentage of images where nerve type was correctly identified, by nerve type and size. Size was assessed by OCT (<1.63 mm² = small; >1.97 mm² = large) (Nixon, 2017)

PMID: 28538334

Cirrus ONH Parameters

		OD	OS
Avera	age RNFL Thickness	73 µm	61 µm
	RNFL Symmetry	5	5%
(Rim Area	1.12 mm ²	0,72 mm ²
	Disc Area	1.58 mm ²	1.72 mm ²
て	Average C/D Ratio	0.53	0.75
	Vertical C/D Ratio	0.49	0.77
	Cup Volume	0.036 mm ³	0.220 mm 3

vays gray b/c not npared to mals! $75 \text{ mm}^2 = \text{sm}$ 5-2.75 mm² = dium $75 \text{ mm}^2 = \text{lg}$

ONH morphology

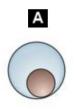
NOTE: Asymmetric size may account for asymmetry in CDR and RNFL

Heidelberg MRW Analysis

Software Version: 6.16.11

Minimum Rim Width Analysis, Page 1

www.HeidelbergEngineering.com


Adjust slit lamp beam height to match disc height to assess whether ONH is unusually large or small

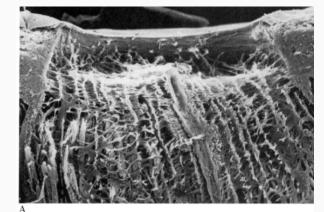
> BEWARE SMALL ONH!

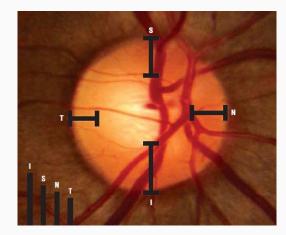
Use R/L asymmetry and ISNT rule violation to decide whether OCT is indicated

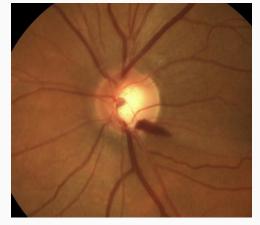
EVALUATION OF THE ONH IN GLAUCOMA

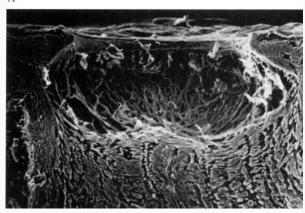
Disc Damage Likelihood Scale

C/D 0.4 Glaucoma


C/D 0.4 Normal


C/D 0.4 Glaucoma


С



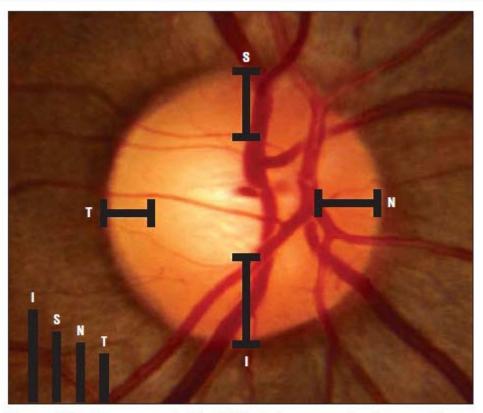
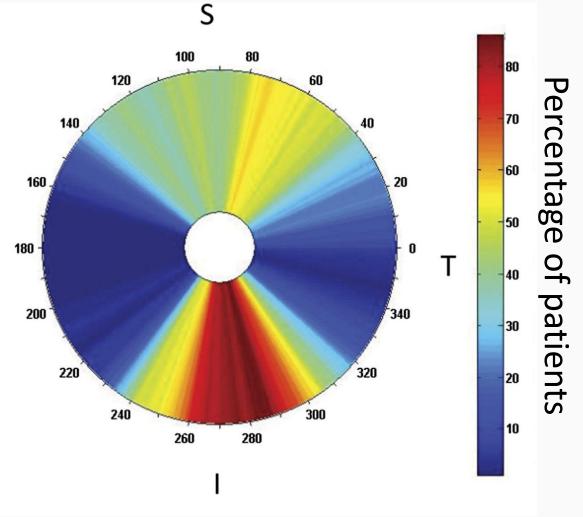

Normal

Figure. Clinical assessment of the ISNT rule for a normal optic nerve. The ISNT rule is that disc rim thickness shows a characteristic configuration of inferior (I) greater than or equal to superior (S) greater than or equal to nasal (N) greater than or equal to temporal (T) (or $I \ge S \ge N \ge T$).

Violation of the ISNT rule (Inf < Sup) is a significant predictor of glaucoma

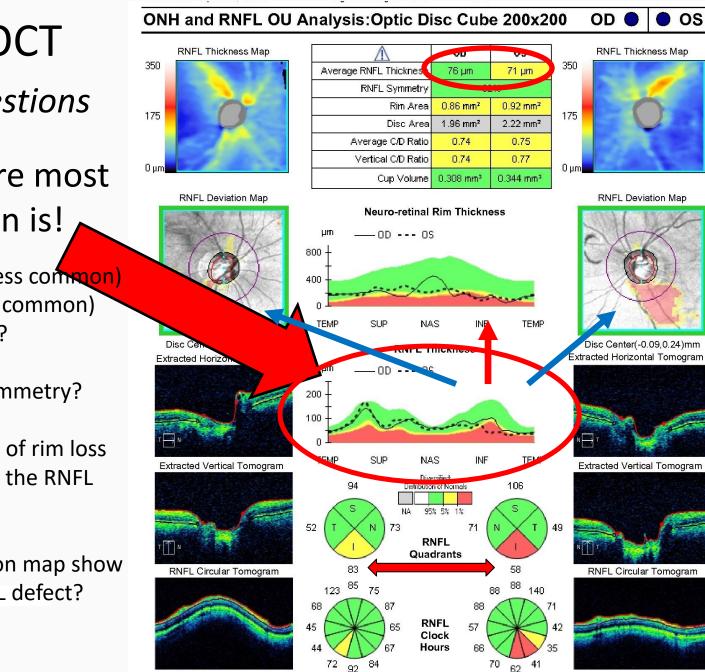

Inf 2 Sup 2 Nas 2 Tem

EVALUATION OF THE ONH IN GLAUCOMA

Frequency distribution of the location of RNFL defects in glaucoma patients.

Most common: infero-temporal meridian (80.4%), superotemporal (54.2%)

N


PMID: 20678802

- OCT Detection of Glaucoma
 - Retinal Nerve Fiber Layer (RNFL)
 - Optic Nerve Head (ONH) Topography
 - Macular Thickness
- Factors Affecting OCT Detection of Glaucoma
 - Disease severity
 - ONH size
 - Others

OCT Detection of Glaucoma

Method #1: Retinal Nerve Fiber Layer Thickness

- <u>3.4mm diameter measurement circle</u>
 - Make sure disc is centered in measurement circle
- <u>Segmentation</u> of RNFL from other layers
 - Accuracy dependent upon <u>signal strength</u>
- Overall, quadrant, sector values
 - Avg and inferior most often affected in early glc
- Compared to age-related norms and fellow eye
 - Average thickness of fellow eyes should be within $10 \mu m$
 - **Difference < 5µm is noise** (stable vs change over time)

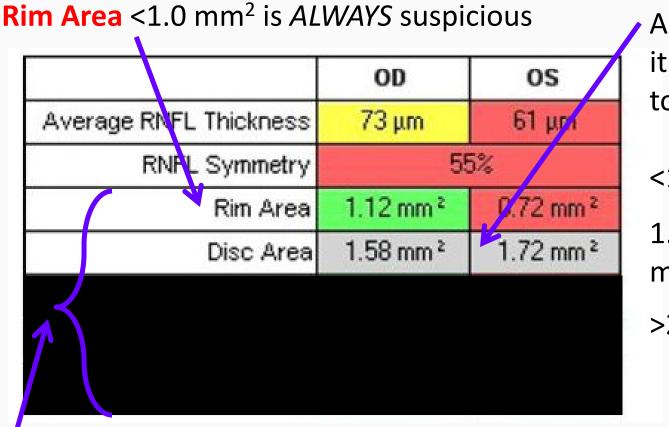
ONH OCT The 4 Questions

This is where most of the action is!

Is the superior (less common) or inferior (more common) hump depressed?

Is there RE/LE symmetry?

Is there evidence of rim loss corresponding to the RNFL loss?


Does the deviation map show evidence of a NFL defect?

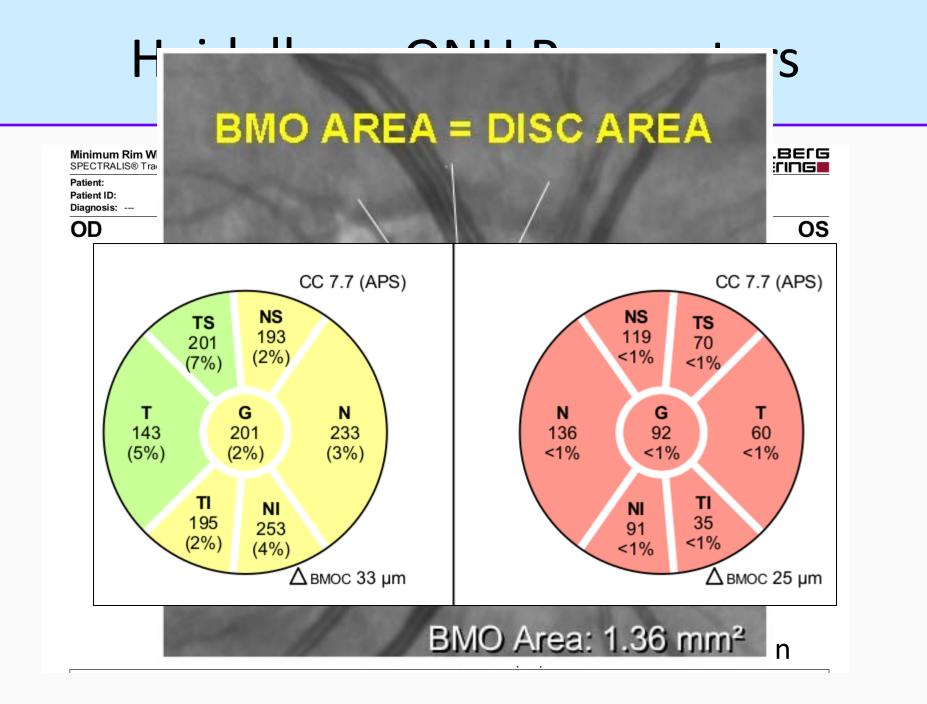
OCT Detection of Glaucoma

Method #2: Optic Disc Morphology

- Compare <u>cup and rim parameters</u> to normals
- Automated detection of disc & cup margins
- ONH margin defined as the termination of Bruch's
 - Analyzed at 255 points around the ONH circumference
 - The shortest perpendicular distance to ILM is the cup margin
- Posterior migration of the lamina

Cirrus ONH Parameters

Always gray b/c it's not compared to normals!

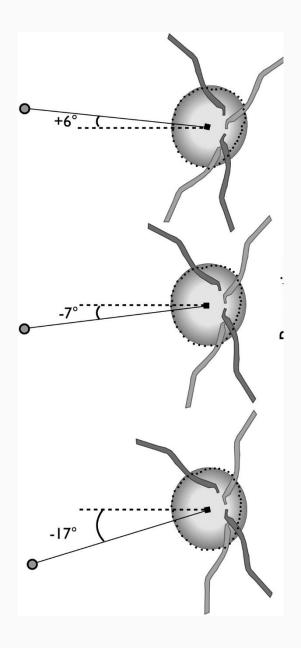

<1.75 mm² = sm

1.75-2.75mm² = medium

>2.75 mm² = lg

ONH morphology

NOTE: Asymmetric disc size may account for asymmetry in CDR and RNFL

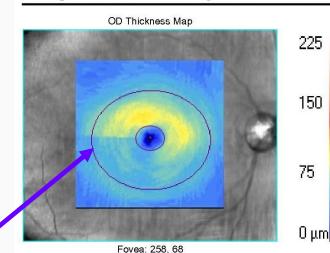

OCT Detection of Glaucoma

Method #3: Ganglion Cell Layer Thickness

- Death of ganglion cells leads to macular thinning
 - Localized &/or diffuse loss
 - Can be correlated with changes in RNFL and VF
- Ganglion Cell Complex (GCC)
 - Because it is technically difficult to segment the GCL from the IPL, all instruments include IPL and/or RNFL in thickness measurement
 - GCC = <u>RNFL + Ganglion cells + Inner plexiform</u> (RTVue)
 - NOTE: Cirrus does not include RNFL in its analysis

Because the fovea lies about 10 degrees below the ONH, <u>ganglion</u> <u>cells inferior and temporal to the</u> <u>fovea are preferentially damaged in</u> <u>glaucoma</u>

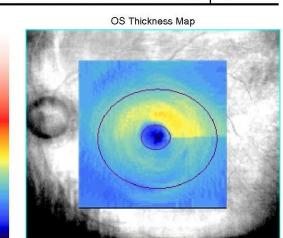
B More vulnerable (outside macula) Less vulnerable (inside macula) More vulnerable (inside macula) More vulnerable PMID: 28012881 (outside macula)


Ganglion Cell OU Analysis: Macular Cube 512x128

GCC Thickness **Data Presentation**

- Thickness map
- Sector thickness •
- **Deviation** map ٠
- Data table
- Tomograms

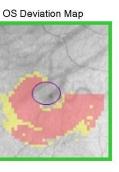
Look for temporal step defect in thickness map and sectors


Are the GCC findings consistent with the RNFL findings?

OD Deviation Map

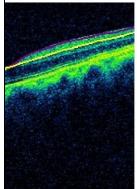
OD Horizontal B-Coan

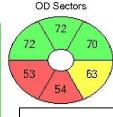
Ν

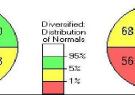

OD

Fovea: 270, 67

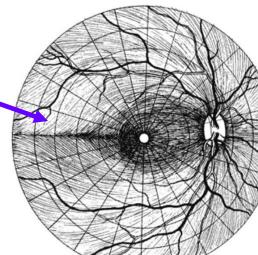
OS Sectors

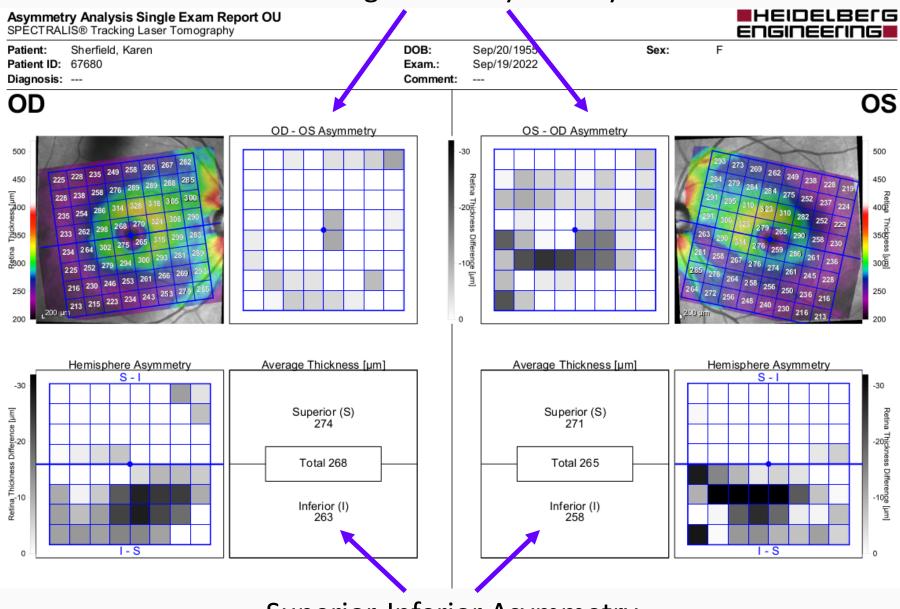

77


56

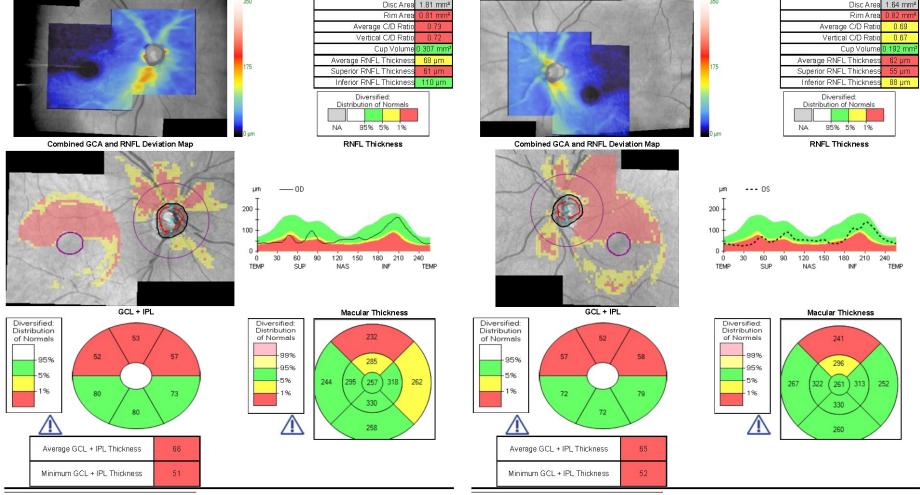


OS

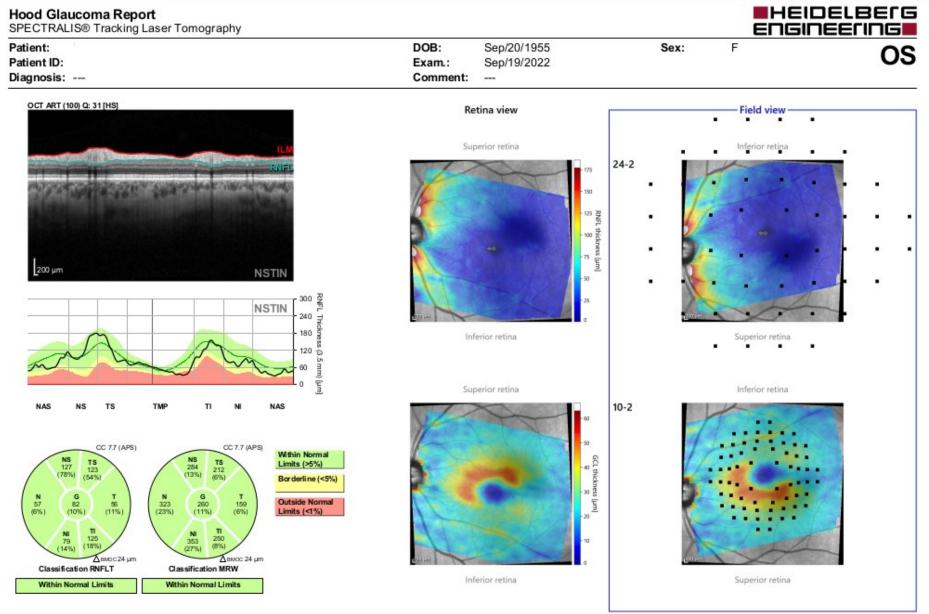

BScan: 67



150



Right-Left Asymmetry



Superior-Inferior Asymmetry

PanoMap Analysis: Right Eye OD • OS				PanoMap Analysis: Left Eye						OD ()	OS OS			
Technician:	Operator, Cirrus	Signal Strength:	10/10	9/10			Technician:	Operator, Cirrus	Signal Strength:	8/10	8/10			
Gender:	Male	Serial Number:	5000-4574	5000-4574			Gender:	Male	Serial Number:	5000-4574	5000-4574			
DOB:	6/4/1952	Exam Time:	8:26 AM	8.27 AM			DOB:	6/4/1952	Exam Time:	8:27 AM	8:27 AM			
ID:		Exam Date:	4/16/2019	4/16/2019	CZMI		ID:	8	Exam Date:	4/16/2019	4/16/2019	CZMI		
Name:			Macula 512x128	Optic Disc 200x200		ZEISS	Name:			Macula 512x128	Optic Disc 200x200			ZEISS

PanoMap Analysis: <u>PRO</u>: See correlation between RNFL and GCC damage. <u>CON</u>: Loss of right-left eye comparisons

Reference database: US Ethnic Mix (2016)

Hood Report – VF overlay missing in USA due to FDA concerns regarding misinterpretation

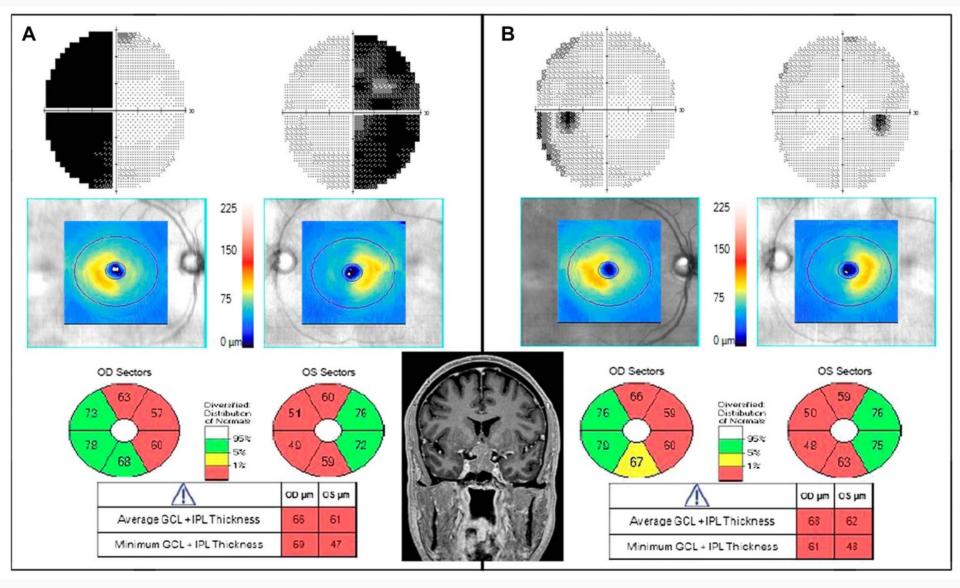
Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression

Richard J. Blanch^{1,2,3} · Jonathan A. Micieli¹ · Nelson M. Oyesiku⁴ · Nancy J. Newman^{1,4,5} · Valérie Biousse^{1,5}

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Purpose To report patients with sellar tumors and chiasmal compression with normal visual fields, who demonstrate damage to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) on optical coherence tomography (OCT). **Methods** Seven patients with sellar tumors causing mass effect on the optic chiasm without definite visual field defect, but abnormal GCC are described. GCC/RNFL analyses using Cirrus-OCT were classified into centiles based on the manufacturer's reference range.


Results In seven patients with radiologic compression of the chiasm by a sellar tumor, <u>OCT-GCC thickness detected compressive chiasmopathy before visual defects</u> became apparent on standard automated visual field testing. Without OCT, our patients would have been labelled as having normal visual function and no evidence of compressive chiasmopathy. With only OCT-RNFL analysis, 3/7 patients would still have been labelled as having no compression of the anterior visual pathways. **Conclusions** These patients show that OCT-GCC analysis is more sensitive than visual field testing with standard automated perimetry in the detection of compressive chiasmopathy or optic neuropathy. These cases and previous studies suggest that OCT-GCC analysis may be used in addition to visual field testing to evaluate patients with lesions compressing the chiasm.

OCT can detect chiasmal compression <u>before</u> VF loss occurs

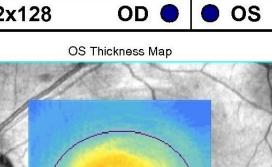
PMID: 30097827

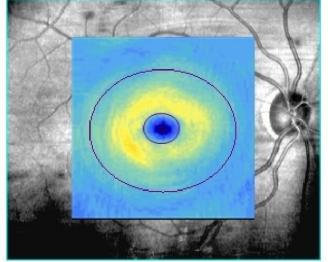
Pre-Op

Post-Op

PMID: 30097827

Name:			OD	OS		ZEIS
ID:		Exam Date:	3/6/2017	3/6/2017	CZMI	
DOB:	10/2/1961	Exam Time:	1:59 PM	2:02 PM		
Gender:	Male	Serial Number:	5000-7099	5000-7099		
Technician:	Operator, Cirrus	Signal Strength:	8/10	8/10		

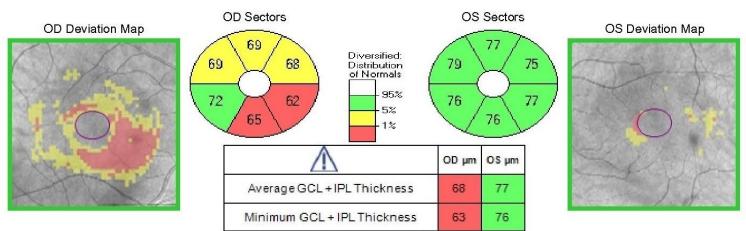

225


150

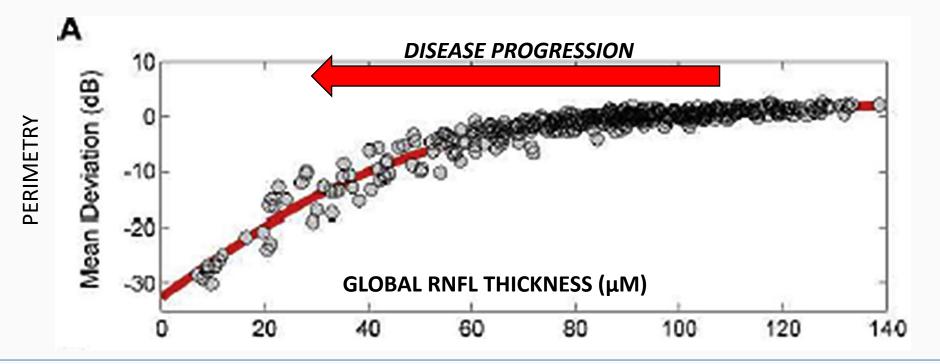
75

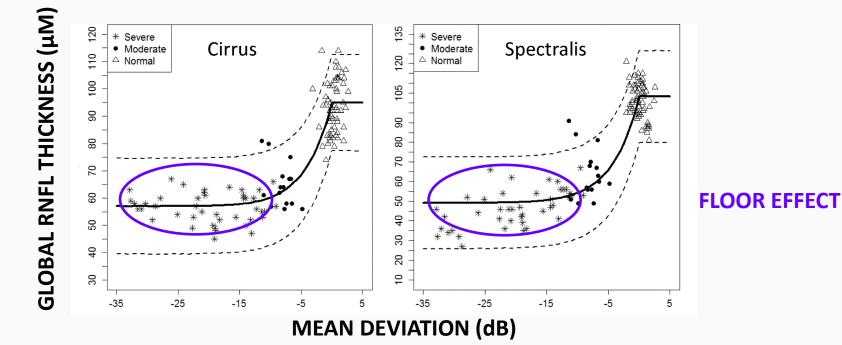
0 μm

Ganglion Cell OU Analysis: Macular Cube 512x128



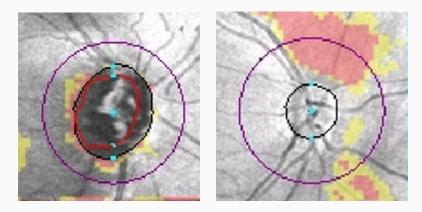
OD Thickness Map

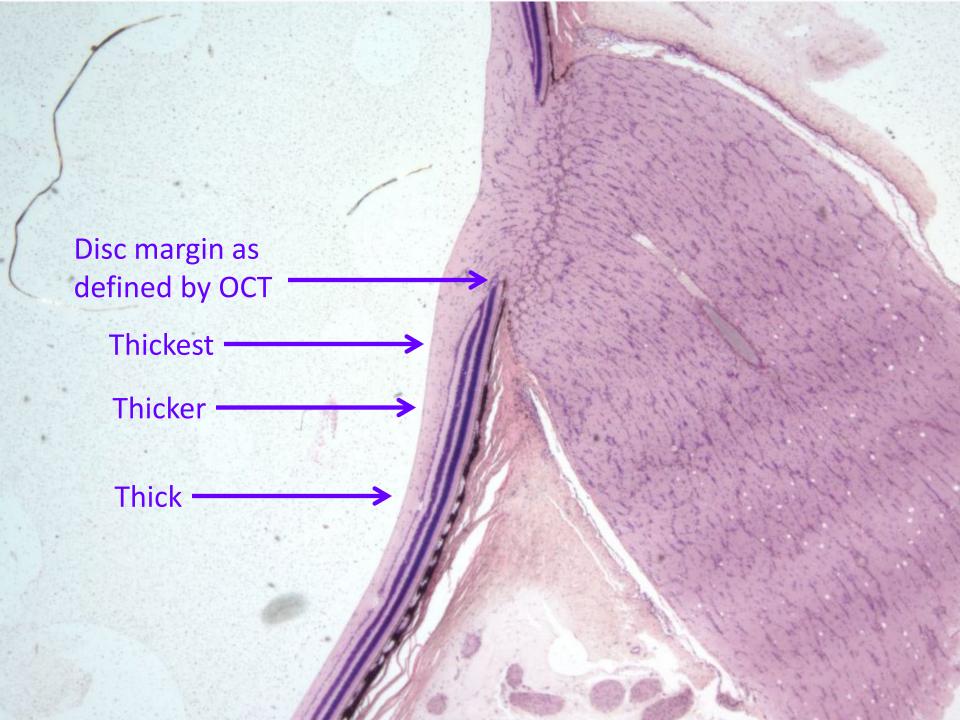



Constant and the Call States of

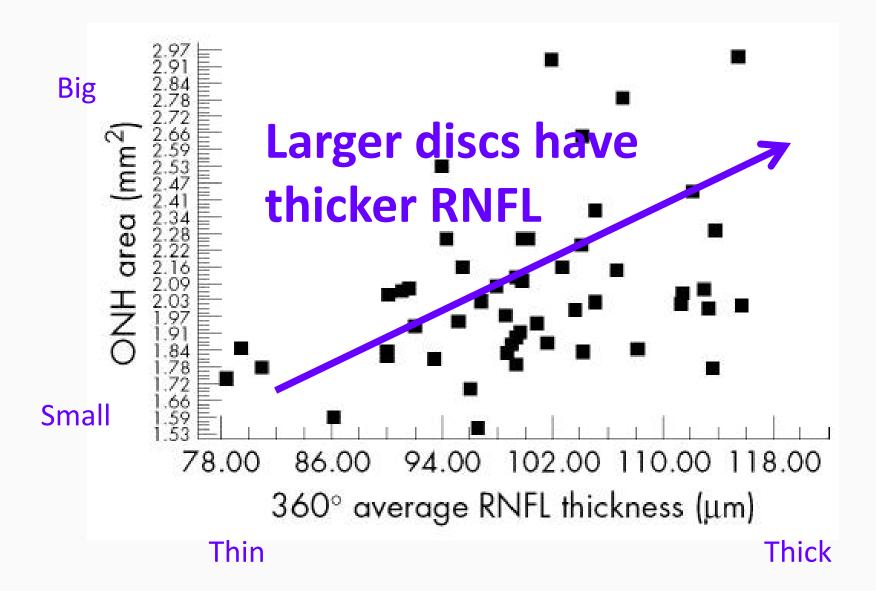
- 1. Disease severity
- 2. Optic disc size
- 3. Signal strength / Errors
- 4. Artifacts / Ocular anomalies
- 5. Axial length
- 6. Blood vessel position
- 7. Age
- 8. Race

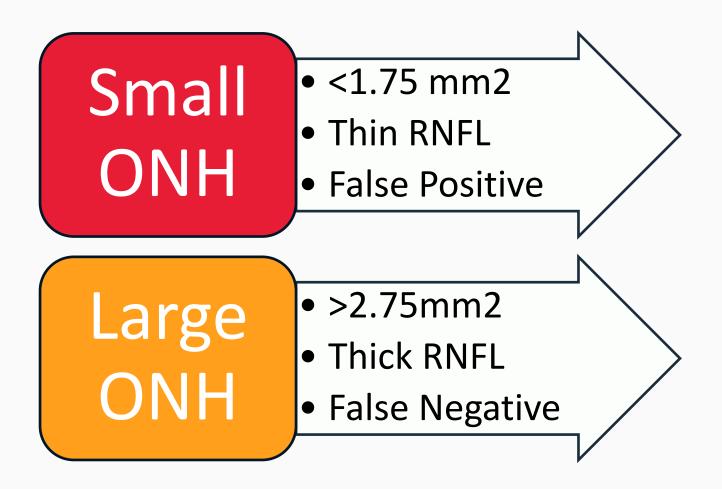
- Disease Severity: Early glaucoma
 - OCT more sensitive than perimetry in detection of early glaucoma.
 - Large overlap between normal and mildly glaucomatous findings makes diagnostic determination upon a single test result difficult
 - Detection of *change over time* may be the most reliable means of confirming the presence of preperimetric disease


- Disease Severity: Severe glaucoma
 - OCT less sensitive than perimetry in detection of progression due to "floor effect"
 - Floor effect: Residual RNFL tissue (blood vessels, glia) masks continued loss of ganglion cell axons
 - OCT not reliable in detecting progression once global RNFL thickness <60um



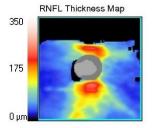
OCT


- Optic Disc Size
 - Larger discs have thicker RNFL measurements

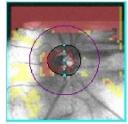


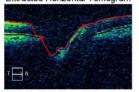
- May contain more nerve fibers
- May be an artifact of fixed measurement circle
- <u>Larger discs have lower sensitivity for early</u> <u>glaucoma detection</u>
 - Because larger discs start with thicker RNFL measurements, they must suffer more damage before registering as abnormal on OCT

Relationship between ONH size and measured RNFL thickness PMID: 15774930

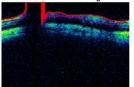


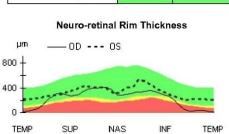
PMID: 21550120


- Signal Strength
 - Scan quality affects OCT performance, even when within manufacturer recommended limits
 - Effect greater on RNFL than ONH and GCC
 - Pupil dilation does not affect signal strength, RNFL measurement or reproducibility in <u>normal eyes</u>
 - Pupil dilation may improve signal strength with <u>cataract</u>
 - <u>Technical errors</u>
 - Disc centration, capture window displacement
 - Blinks & eye movements

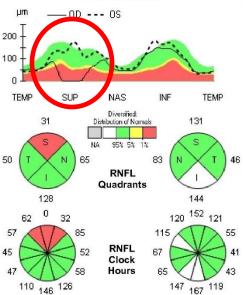


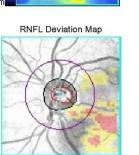
RNFL Deviation Map

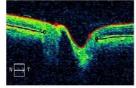

Disc Center(-0.12,0.09)mm Extracted Horizontal Tomogram

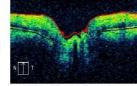


Extracted Vertical Tomogram

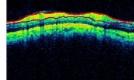


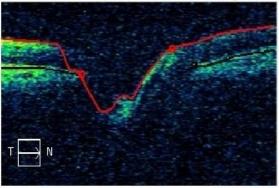

RNFL Circular Tomogram

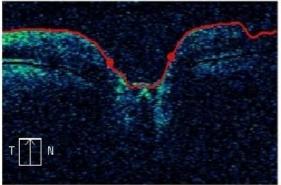

RNFL Thickness

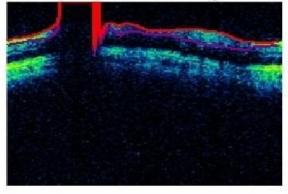


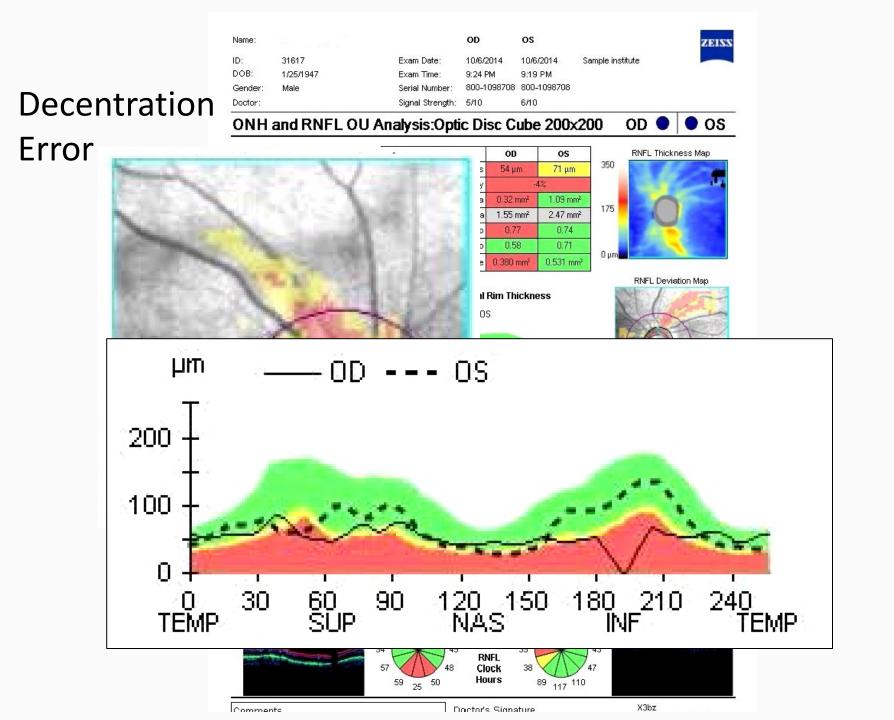
RNFL Thickness Map


Disc Center(-0.09,0.12)mm Extracted Horizontal Tomogram


Extracted Vertical Tomogram


RNFL Circular Tomogram

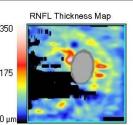

Extracted Horizontal Tomogram


Extracted Vertical Tomogram

RNFL Circular Tomogram

~

- Ocular Anomalies
 - Cataracts can decrease signal strength
 - May be improved with pupil dilation
 - Epiretinal membrane is a common artifact on RNFL and GCC scans
 - ERM may inflate RNFL and macular thickness measurements
 - Partial PVD will also inflate the thickness measurements until detachment occurs
 - Decrease in thickness following PVD may simulate glaucoma progression

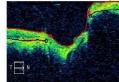

- Axial Length
 - RNFL thickness is influenced by axial length—<u>the</u>
 <u>longer the eye, the thinner the mean RNFL</u>
 - Every 1mm \uparrow axial length = 2.2µm \downarrow RNFL thickness
 - High myopes may also have <u>lateral shifts in the</u> <u>RNFL thickness profile</u>
 - Longer axial length associated with significantly higher risk of OCT <u>false positive</u>

Pathologic Myopia

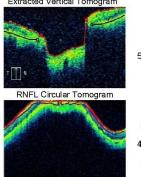
ONH and RNFL OU Analysis:Optic Disc Cube 200x200

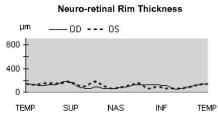
RNFL Thickness Map 350 175 0 un

\wedge	OD	OS
Average RNFL Thickness	61 µm	64 µm
RNFL Symmetry	5	5%
Rim Area	0.57 mm²	0.65 mm²
Disc Area	2.27 mm²	2.61 mm²
Average C/D Ratio	0.87	0.86
Vertical C/D Ratio	0.85	0.89
Cup Volume	0.785 mm ³	0.621 mm³

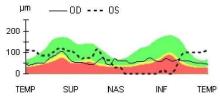

OS

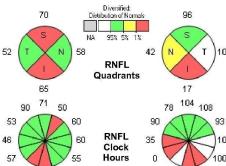
OD 🔴



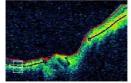


Disc Center(-0.03,0.06)mm Extracted Horizontal Tomogram

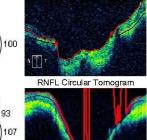



Extracted Vertical Tomogram

64


66

64

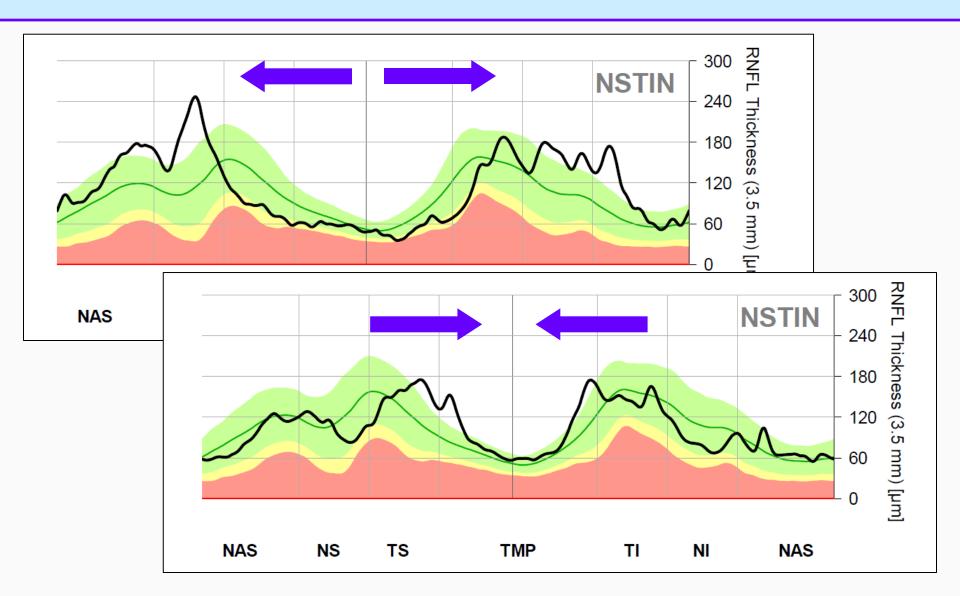


RNFL Deviation Map

Disc Center(0.33,0.42)mm Extracted Horizontal Tomogram

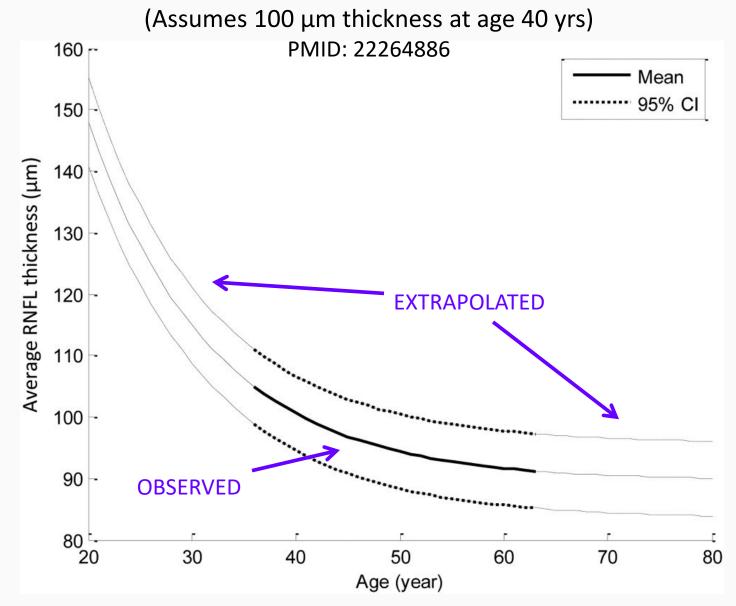
107

00


44

8

0



- Blood Vessel Position
 - The thickest RNFL region is usually at the location of the temporal vascular arcades.
 - Variations in normal RNFL profiles are often due to variation in blood vessel location
 - <u>Split bundles</u>: When the RNFL bundles traveling with the nasal and temporal arcades are distinctly separated. May simulate a wedge defect

- Age
 - RNFL thickness declines with age, but not linearly
 - -<u>Rate</u> of loss declines with age
 - The rate of decline is greater in eyes with thicker baseline RNFL thickness
 - Rate of decline is greater at the poles than laterally
 - All OCT normative data is age-related

Decline in Average RNFL Thickness with Age

Take Home Messages

- Focus on the data, not just the colors

 Analyze RNFL, ONH morphology and GCC
- Recognize confounding effect of disc size, refractive error, blood vessel position

 Red disease and Green disease
- Beware of errors and artifacts

 Signal strength, centration, blinks, ERM, PVD
- Attempt to correlate OCT with perimetry

 Focus on OCT in early disease and VF in advanced

PITFALLS IN THE DIAGNOSIS OF GLAUCOMA

Differential Diagnosis of Normal Tension Glaucoma

Rick Trevino, OD, FAAO Indiana University School of Optometry

Key Features of Primary Open Angle Glaucoma

1. ONH

- Cupping. ISNT rule. ONH hemorrhages. No pallor!
- 2. VF
 - Respect horizontal midline. No vertical midline cuts!
 - Nasal loss > Temporal loss

3. IOP

- >21 mmHg on at least one occasion
- Other
 - Normal visual acuity (R/O optic n. & retinal dx)
 - Unoccludable angles (R/O ACG with gonioscopy)

ONH	Х		Х		X		Х
VF	Х		Х	X		Х	
IOP	Х	Х				Х	Х
	POAG	OHT	NTG Neurologic Diurnal IOP	Artifact? Neurologic Retinal	Anomalous ONH? Unreliable VF? Pre-perimetric	Pseudo- normal ONH?	Unreliable VF? Pre- perimetric

ONH: ONH appearance and OCT findingsVF: Defects on SAP consistent with glaucomaIOP: IOP >21mmHg on at least 1 occasion

ONH	Х		Х		X		Х
VF	Х		X	X		Х	
IOP	Х	Х				Х	Х
	POAG	OHT	NTG Neurologic Diurnal IOP	Artifact? Neurologic Retinal	Anomalous ONH? Unreliable VF? Pre-perimetric	Pseudo- normal ONH?	Unreliable VF? Pre- perimetric

Two abnormal findings increase the likelihood of the patient having glaucoma

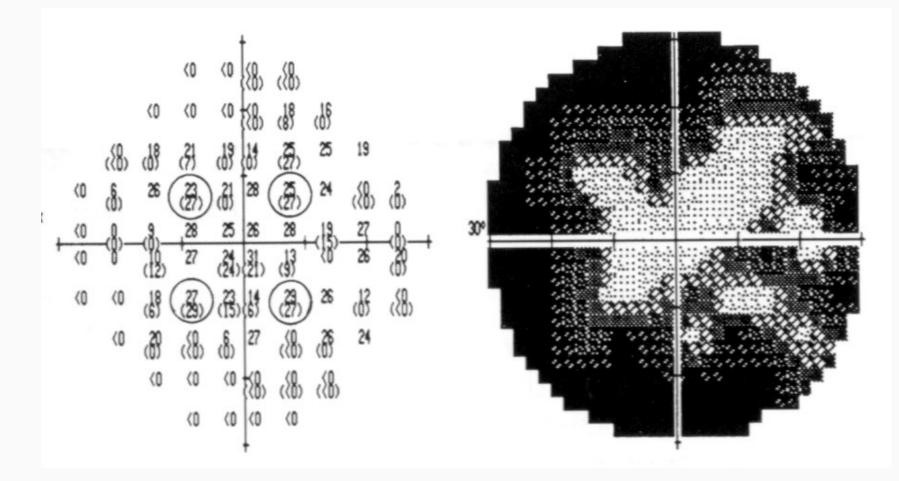
Patients with elevated IOP and <u>either</u> VF defects or optic nerve findings characteristic of glaucoma should have their IOP lowered

ONH	Х		Х		Х		Х
VF	Х		Х	Х		Х	
IOP	Х	Х				Х	Х
	POAG	OHT	NTG Neurologic Diurnal IOP	Artifact? Neurologic Retinal	Anomalous ONH? Unreliable VF? Pre-perimetric	Pseudo- normal ONH?	Unreliable VF? Pre- perimetric

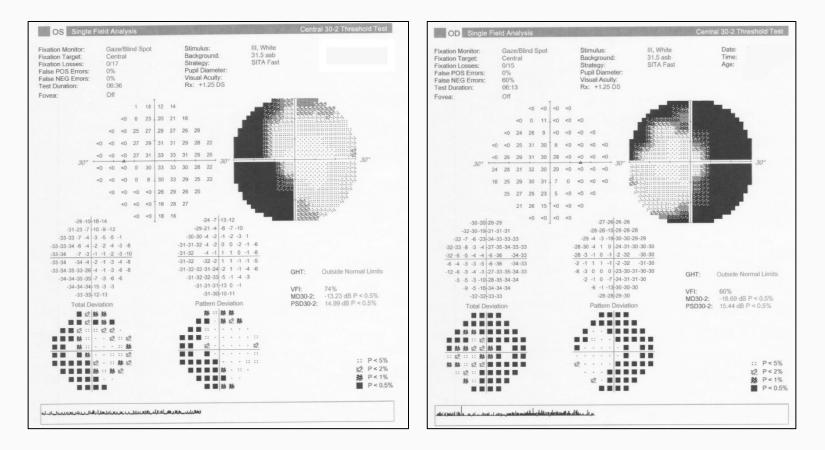
Differential Diagnosis:

- Classic NTG
- Other optic nerve disease (AION, tumors, etc)
- POAG with undetected diurnal peak

ONH	Х		X		Х		Х
VF	Х		X	Х		Х	
IOP	Х	Х				Х	Х
	POAG	OHT	NTG Neurologic Diurnal IOP	Artifact? Neurologic Retinal	Anomalous ONH? Unreliable VF? Pre-perimetric	Pseudo- normal ONH?	Unreliable VF? Pre- perimetric


Having **only 1 abnormal finding** decreases the likelihood of glaucoma

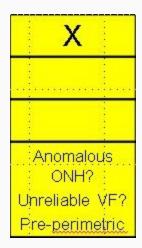
Patient may be completely normal or have non-glaucomatous optic nerve disease


NTG Suspect #1

- VF defects only
 - Need to confirm reproducibility of defect
 - Avoid artifacts: trial lens, lids, etc
 - Watch for signs of fatigue (clover leaf pattern)
 - Is the ONH really normal?
 - Pseudo-normal ONH: small discs with small cups
 - Green disease: Large ONH with thick RNFL
 - Is the VF defect characteristic for glaucoma?
 - Beware vertical midline respect!
 - Temporal loss greater than nasal loss \rightarrow not glaucoma
 - Chorioretinal scars, old retinal vascular occlusions, etc
 - **Plan**: Neuroimaging and/or monitor

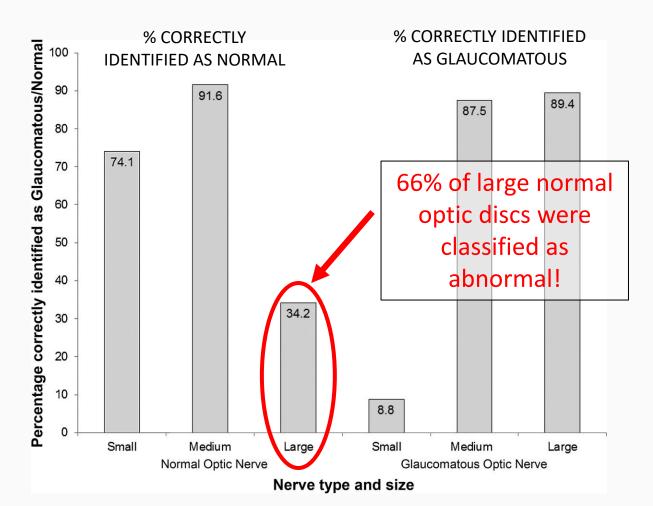
Х
Artifact?
Neurologic
Retinal

<u>Cloverleaf pattern</u> of loss on Humphrey automated perimetry could be misinterpreted as severe glaucomatous loss



Glaucomatous defects <u>always</u> respect the horizontal midline and are typically greater nasally than temporally

These defects are greater temporally, and do <u>not</u> respect the horizontal


NTG Suspect #2

- ONH only
 - Anomalous optic nerves are common and many appear glaucomatous
 - Most patients with ISNT rule violation, asymmetric cupping, etc are normal
 - Recognizing suspicious ONH cupping is the key to diagnosing NTG!
 - Plan
 - If OCT is normal: Just another FLN \rightarrow annual exams
 - If OCT suggests glaucoma but VF is normal: Monitor

Numerous studies have documented the difficulty of correctly identifying glaucomatous damage in small optic discs

Nixon (2017): Doctors examined stereophotos of optic nerve heads and were asked to classify them as normal or glaucomatous

Percentage of images where nerve type was correctly identified, by nerve type and size. Size was assessed by OCT (<1.63 mm² = small; >1.97 mm² = large) (Nixon, 2017)

NTG Management

Natural History of Normal-Tension Glaucoma

Collaborative Normal-Tension Glaucoma Study Group

Objective: A recently reported randomized study described the role of intraocular pressure (IOP) in normaltension glaucoma (NTG) pathogenesis and the effect of therapeutic lowering of IOP. This is a report of an analysis of the natural course of NTG during the time eyes were not receiving therapy, either in the time interval awaiting randomization or after being randomly assigned not to receive treatment to lower the IOP.

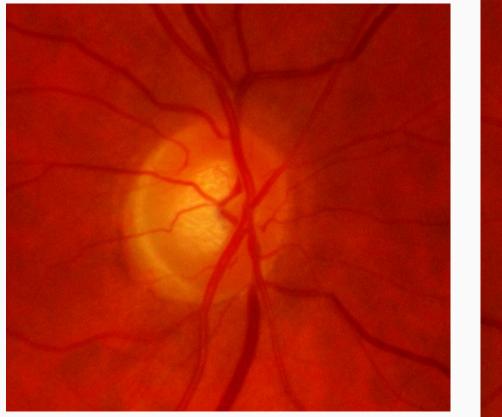
Design: Analysis of prospectively collected data on the long-term course of a cohort of untreated subjects with normal-tension glaucoma, a subset of subjects enrolled in a randomized controlled clinical trial.

Randomization and Subject Selection: If the field defect in the study eye threatened the point of fixation, the subject was randomly assigned to start on treatment immediately or to be observed without treatment until progression was documented. Otherwise, an eye was randomly assigned only when and if, subsequent to enrollment, it showed visual field progression, progression of optic disc cupping, or a new disc hemorrhage.

Participants: Data were collected for this report on 160 subjects observed without treatment among a total enrollment of 260. They consist of 49 subjects who were randomly assigned on enrollment not to receive therapy,

Study of the natural course of NTG while eyes were <u>not</u> receiving therapy

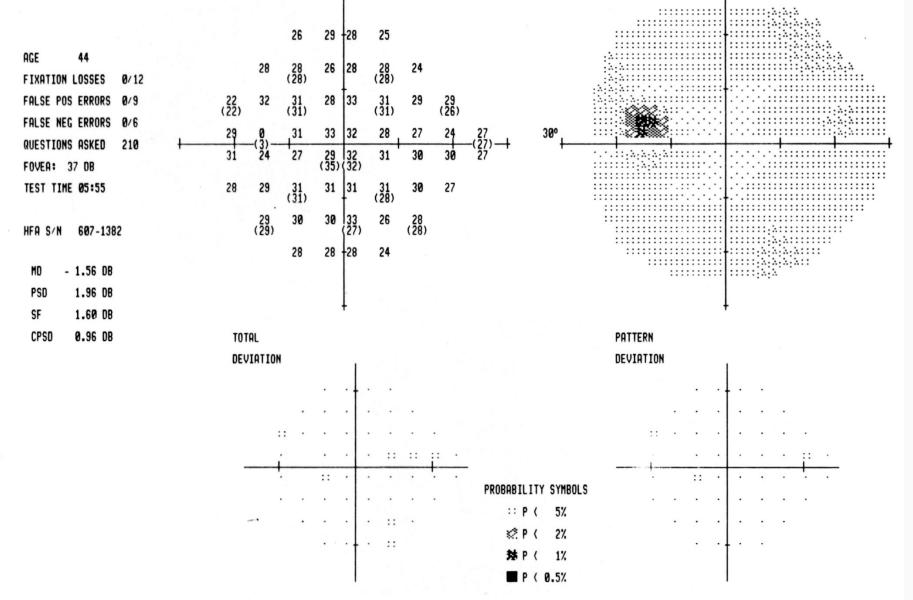
- Awaiting randomization
- Randomized to not receive treatment

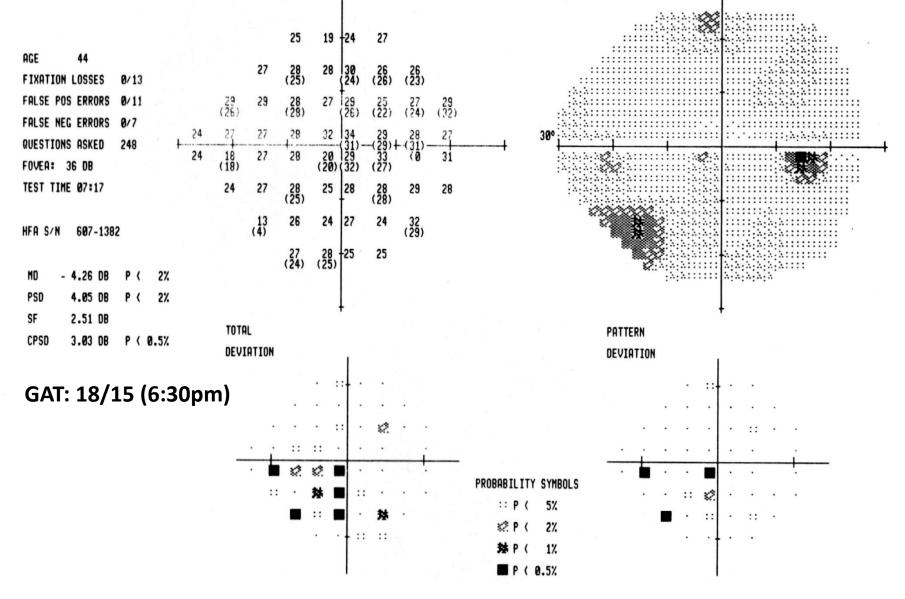

Conclusions: Some cases of NTG progress more rapidly than others. Although approximately half of cases showed a confirmed localized visual field deterioration by 7 years, the change is typically small and slow, often insufficient to measurably affect the MD index.

Case Report

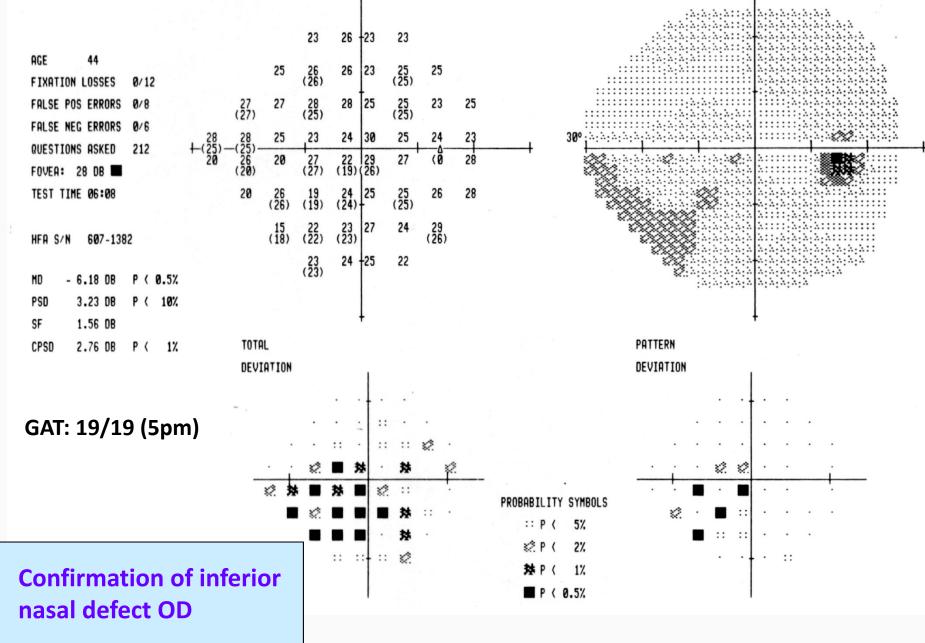
- 44yo WM presents for routine eye exam
- LLE: 7-8yrs ago
- PMH: migraines, smoker, no meds
- FOH: No glaucoma
- Refraction:
 -4.00-0.75x060 20/25
 -4.75 20/20
- PERRL, (-)APD

- BP: 130/84
- GAT: 20/20 3pm
- C/D: 0.6 OD, 0.5 OS


- IMP: Borderline IOP
- Plan: Schedule VF



Case Report Slight asymmetry of optic cupping


LEFT EYE

RIGHT EYE

RIGHT EYE

What is it?

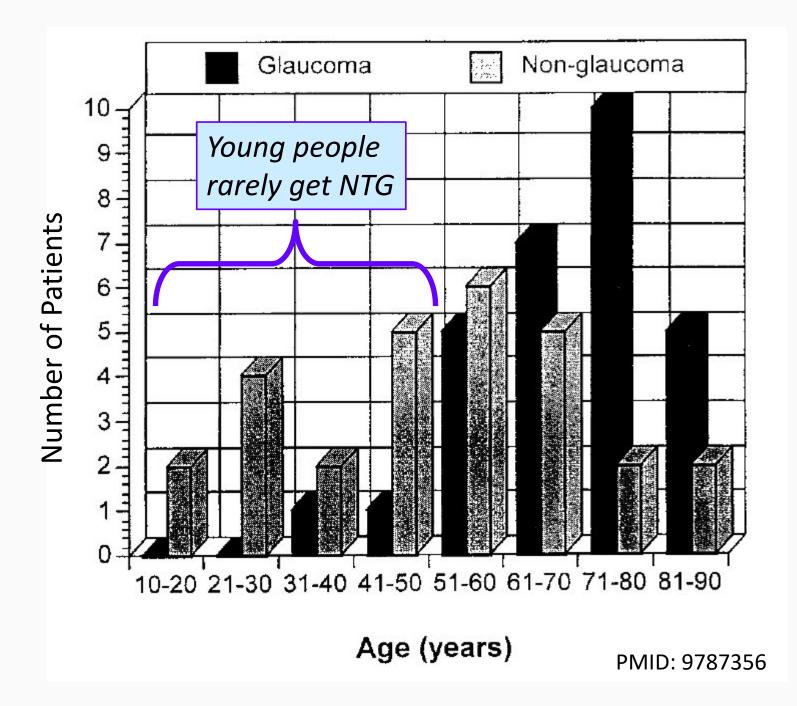
ONH	Х		Х		X		Х
VF	Х		X	X		Х	
IOP	Х	Х				Х	Х
	POAG	OHT	NTG Neurologic Diurnal IOP	Artifact? Neurologic Retinal	Anomalous ONH? Unreliable VF? Pre-perimetric	Pseudo- normal ONH?	Unreliable VF? Pre- perimetric

What is it?

ONH	Х		Х		Х		Х
VF	Х		Х	Х		Х	
IOP	Х	Х				Х	Х
	POAG	OHT	NTG Neurologic Diurnal IOP	Artifact? Neurologic Retinal	Anomalous ONH? Unreliable VF? Pre-perimetric	Pseudo- normal ONH?	Unreliable VF? Pre- perimetric

- **ONH**: 0.1 difference in CDR. *Not frankly glaucomatous* (obeys ISNT rule). No pallor
- VF: Reproducible VF defect, suggestive of inferior nasal step
- IOP: Consistently below 21 mmHg

Normal Tension Glaucoma

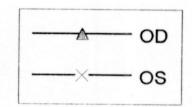

- Differential Diagnosis
 - NTG
 - Undetected high-tension glaucoma
 - Diurnal variation, Intermittent elevation (eg. subacute ACG), Previous elevation (eg. steroid use, PDS)
 - Tonometric error (thin cornea, S/P LASIK)
 - Non-glaucomatous causes for VF defect
 - <u>Optic nerve lesions</u> (eg. retrobulbar optic nerve lesions, anomalous optic disc, disc drusen, AION)
 - <u>Retinal lesions</u> (eg. old retinal vascular occlusions, chorioretinal scars, retinal detachments)

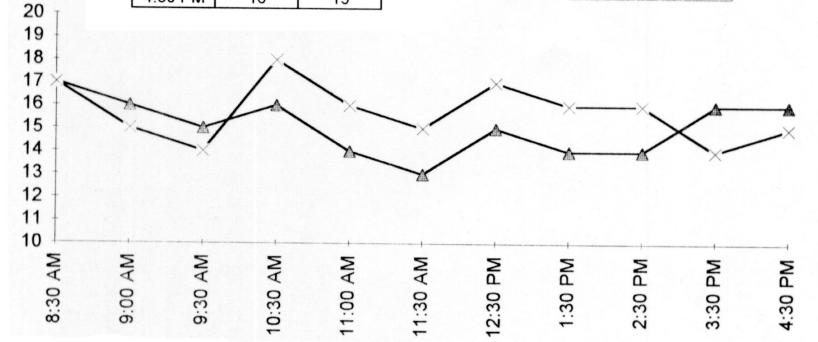
Non-Glaucomatous Cupping

- Physiologic
- Congenital anomalies
- Hereditary optic atrophy
- Ischemia (arteritic > nonarteritic)
- Inflammation
- Toxic/Trauma
- Retrograde degeneration
- Compression

Findings Suggestive of Non-Glaucomatous Optic Neuropathy

- Young age (<50yo)
- VA & color vision loss
- Afferent pupillary defect / Unilateral disease
- Retinal findings (vasc attenuation, exudates)
- Vertically aligned VF defects
- ONH rim pallor / Shallow cupping
- Neurologic abnormalities (HA, diplopia, etc)


Case Report Continued


- Ophthalmology consult
 - Hx: No head/eye trauma, (+) migraine HA
 - GAT: 19/19 (3:30pm)
 - Gonio: normal OU
 - Pupils normal
 - Color vision: normal
 - DFE: normal OU, no pallor
 - IMP: Abnormal VF with normal IOP and ONH
 - PLAN: Get diurnal curve

APPLANATION TONOMETRY READINGS

TIME	OD	OS			
8:30 AM	17	17			
9:00 AM	16	15			
9:30 AM	15	14			
10:30 AM	16	18			
11:00 AM	14	16			
11:30 AM	13	15			
12:30 PM	15	17			
1:30 PM	14	16			
2:30 PM	14	16			
3:30 PM	16	14			
4:30 PM	16	15			

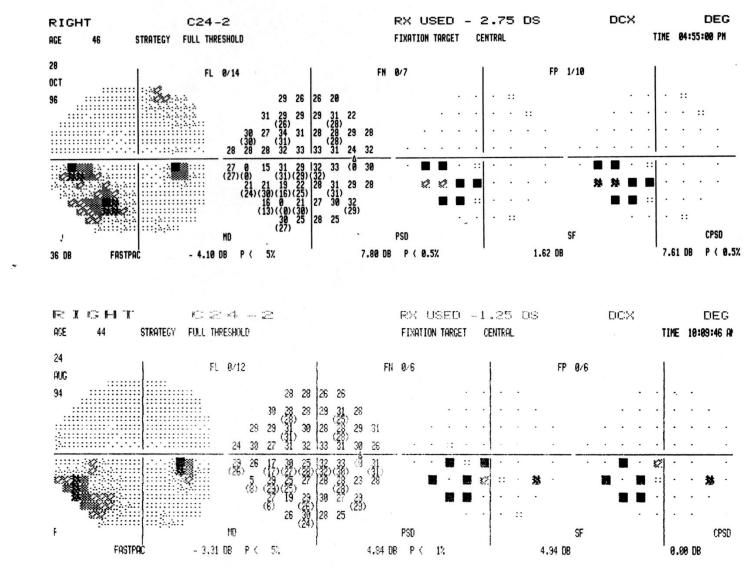
Diurnal Curve

Diurnal IOP FAQ

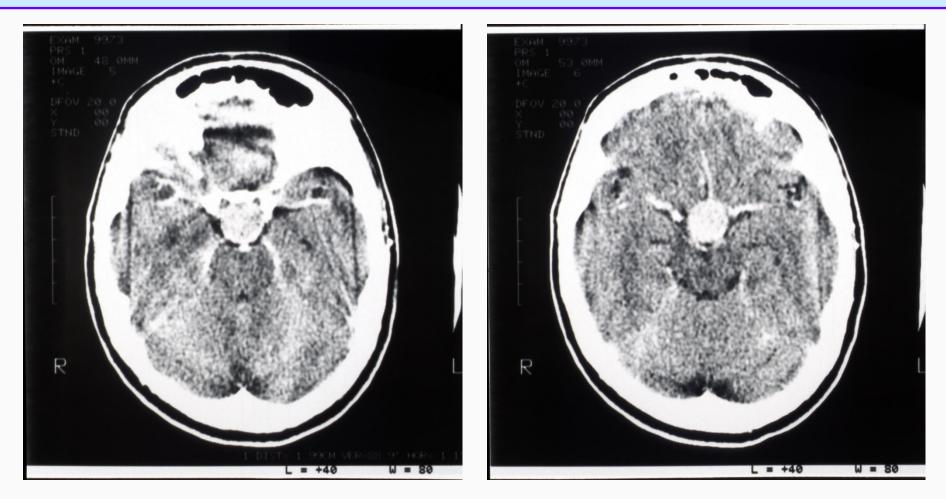
- How to monitor diurnal IOP over 24 hours
 - Sleep lab, Triggerfish
 - iCare HOME tonometer

Water Drinking Test

- NPO 2 hours prior to exam
- Measure baseline IOP
- Pt consumes 1L H_2O in <5 min
- Check IOP every 15 min x 1 hr
- IOP peak approximates diurnal peak



Case Report Continued


- Lost to follow-up for 2 years
- Returns with c/o blurry vision
- Vcc
 -4.00-0.75x060 20/40
 -4.75 20/40
- Refraction

 -5.25-1.00x075 20/30
 -5.25-0.50x105 20/20

- GAT: 18/18 (3:30pm)
- PERRL, Trace APD OD
- C/D: 0.6/0.5
- IMP: Optic neuropathy OD
- Plan: Repeat VF, get CT scan

CT Scan

Pituitary adenoma.

Non-Glaucomatous Cupping

- Physiologic
- Congenital anomalies
- Hereditary optic atrophy
- Ischemia (arteritic > nonarteritic)
- Inflammation
- Toxic/Trauma
- Retrograde degeneration

Band (or bow-tie) pattern of pallor is characteristic of optic tract and chiasmal lesions

PMID: 23964192

Enlarged optic cupping with tumor compressing chiasm and right optic nerve

PMID: 21149793

Visual Defects in Patients With Pituitary Adenomas: The Myth of Bitemporal Hemianopsia

Bitemporal hemianopia accounts for ≈40% of VF defects caused by chiasmal compression PMID: 26496573, 23563861

When Should I Order an MRI?

Findings that increase the likelihood of an intracranial mass lesion

- Age <50yrs
 - NTG is rare in young people
- VA worse than 20/40
 - Beware unexplained reduction in BVA
- Vertically aligned visual field defects
 - Glaucomatous defects do not respect the vertical
- Optic disc pallor

Take Home Messages

• Be a skeptic

NTG is a diagnosis of exclusion

• Embrace uncertainty

- You may never know if you have made the correct diagnosis
- Did the 50% of NTG suspects that never showed progression have glaucoma, or something else?
- Know the indications for neuroimaging
 - Age < 50yo, vertically aligned VF defects, unexplained loss of VA, ONH pallor

PITFALLS IN THE DIAGNOSIS OF GLAUCOMA

False Positive Diagnosis of Glaucoma

Rick Trevino, OD, FAAO Indiana University School of Optometry

What is a False Positive Diagnosis?

Patient

Has No Glaucoma Glaucoma **Doctor's Diagnosis** Has Glaucoma Common No Glaucoma Rare

Are False Positive Diagnoses a Problem Worth Worrying About?

- Patients misdiagnosed with glaucoma or as a glaucoma suspect may be subjected to many years of unnecessary treatment and/or surveillance
 - <u>Economic costs</u>: Medications, office visits, time off work, laser procedures
 - <u>Patient safety</u>: Adverse effects & complications of therapy
 - <u>Psychological trauma</u>: Fear of blindness

- No data from USA
 - All published studies are from countries with single-payer national health insurance schemes
- Definition of false positive referral
 - Pt is discharged by the glaucoma specialist after the first visit without a diagnosis of glaucoma and without future follow-up visits scheduled
 - Glaucoma suspects are not considered false positive (they are typically given follow-up appointments)

THE COLLEGE OF

Received: 5 February 2023	Accepted: 31 May 2023	Published online: 3 July 2023
DOI: 10.1111/opo.13183		

REVIEW ARTICLE

Assessment of optometrists' referral accuracy and contributing factors: A review

Josie Carmichael^{1,2} <a>[b] | Sarah Abdi¹ | Konstantinos Balaskas² | Enrico Costanza¹ | Ann Blandford¹ 2023 review article All studies from UK

Relevance to USA?

PMID: 37395045

		CASES	FP		
1	Huang (2020)	74	19	26%	
2	<u>Şii</u> (2019)	312	91	29%	
3	Kamel (2019)	98	35	36%	≻ 26%
4	Annoh (2019)	715	156	22%	
5	<u>Founti</u> (2018)	28	12	43%	
6	Kahn (2012)	102	31	30%	
7	Lockwood (2010)	441	257	58%	47%
8	Salmon (2007)	1106	531	48%	4170
9	Bowling (2005)	2506	1148	46%	J
		5382	2280	42%]

• Keenan (2014) – Australia

- Retrospective review of glaucoma referrals by specially trained ODs between 2010 and 2013.
 - ODs underwent didactic and clinical training in the Glaucoma Clinic and were required to have automated perimetry, pachymetry and optic disc photography

Glaucoma	Glc Suspect	OHT	Other	Normal	Total
153 (8.8%)	185 (10.7%)	113 (6.5%)	192 (11.1%)	1090 (62.9%)	1733
26%				PMID: 250)70417

• Verma (2014) – Canada

- Retrospective study of referrals to a teleglaucoma program in Alberta from 2008-2012
- Referring practitioners completed a training session on glaucoma diagnosis.

Glaucoma	Glc Suspect	Normal	Total
77 (31.2%)	104 (42.1%)	66 (26.7%)	247

Conclusion: A key factor for success is using stringent referral criteria

PMID: 24767217

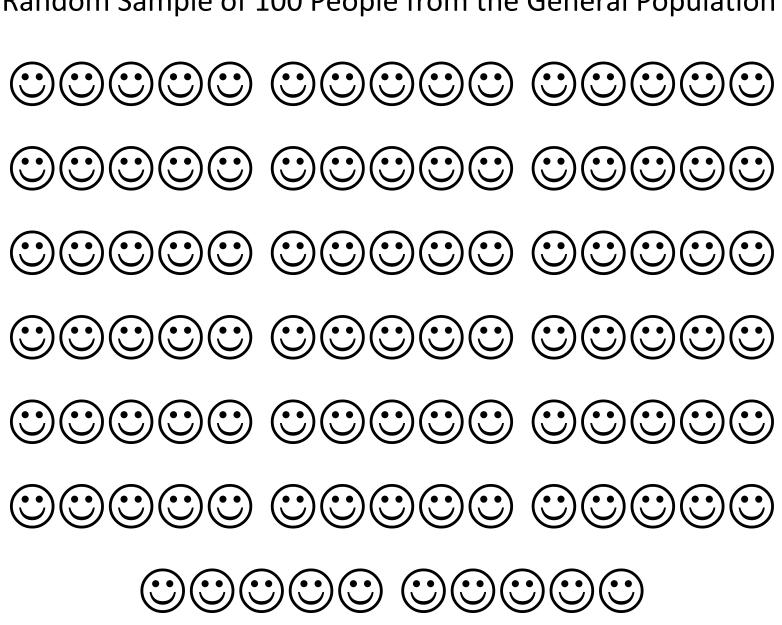
• Founti (2018) – UK

- Prospective study of 50 consecutive referrals to a glaucoma specialist
- Optometrist referrals: 43% false positive
- Ophthalmologist referrals: 50% false positive
- Overall, only 10% of newly referred patients had glaucoma
- 32% of referrals were due to elevated IOP only
- Conclusion: Elevated IOP only is a poor predictor of glaucoma

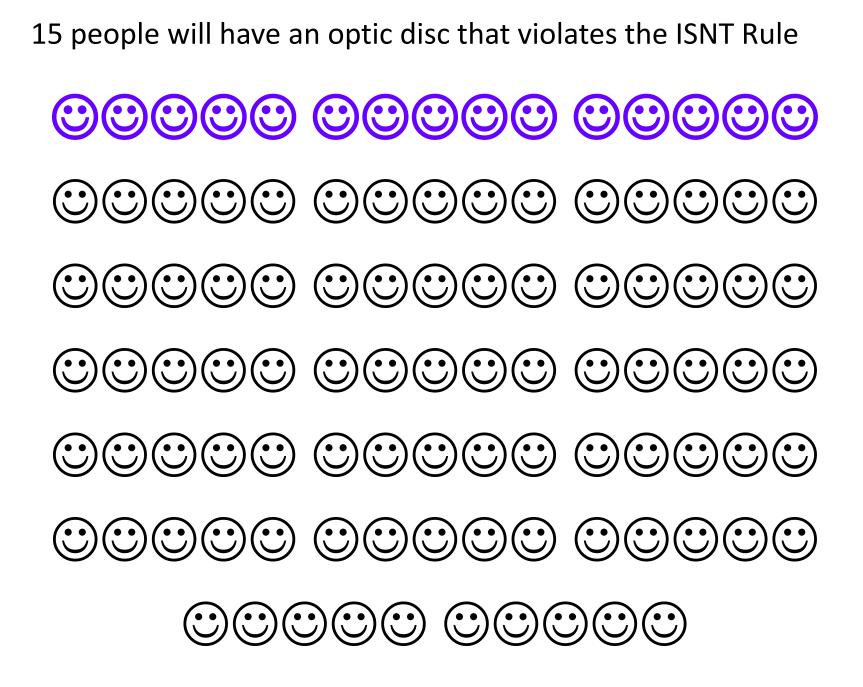
 False positive diagnoses of glaucoma are a common problem

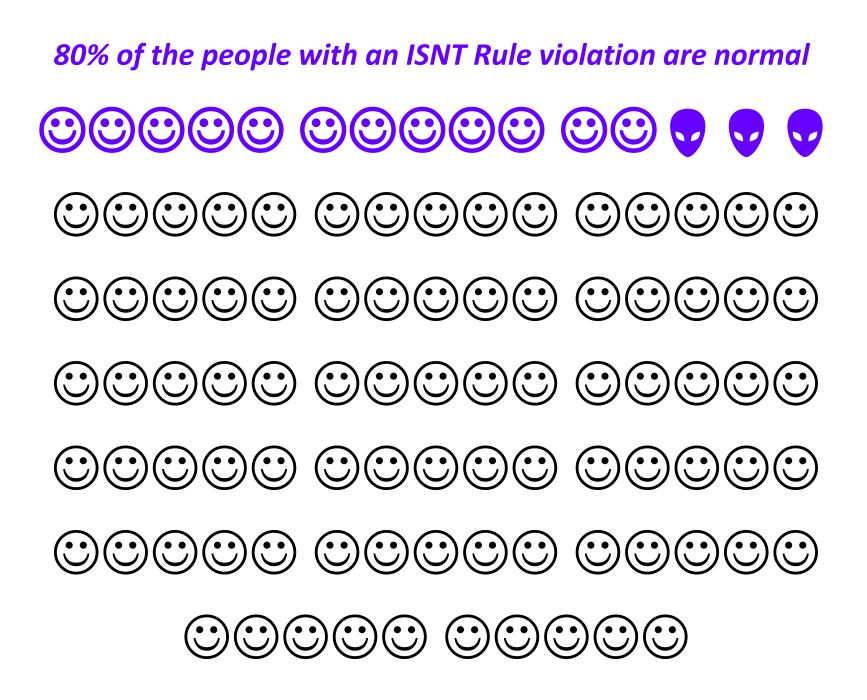
Affects both ODs and general ophthalmologists

- What should the false positive rate be?
 No consensus. Lowest report is 22%
- Problems associated with attempts to decrease the false positive rate
 - More false negatives (missed glaucoma)
 - Reason for current false positive rate is unclear


Why is the False Positive Rate so High?

- 1. Low prevalence of glaucoma
- 2. Medicolegal pressure
- 3. Financial and time constraints
- 4. Clinical skills required for glaucoma diagnosis
- 5. Excessive reliance on technology
- 6. Clinical decisions made on the basis of a single abnormal finding


Low Prevalence of Glaucoma


- Diagnosing glaucoma is difficult

 No pathognomonic sign of glaucoma
- Findings we associate with glaucoma have a certain prevalence in the normal population
- Because glaucoma is so rare (2-3%), these suspicious findings will turn up <u>more</u>
 <u>frequently</u> in normal people than in glaucoma patients

Random Sample of 100 People from the General Population

Medicolegal Pressure

- The most common source of lawsuits against optometrists involve misdiagnosis or missed diagnosis of glaucoma
- Defensive Medicine
 - The incentive to aggressively diagnose glaucoma is greater than the incentive to take a more conservative approach

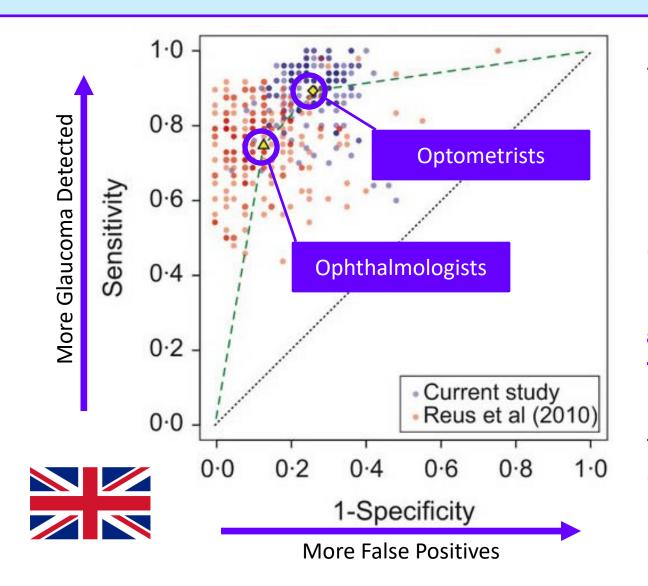
Financial & Time Constraints

- For some practitioners, there are incentives to refer patients with suspicious findings rather than doing a complete work-up themselves
 - Retail settings, optometric specialty practices (contact lens, low vision, etc)
- Most commonly cited barrier to glaucoma detection
 - Survey of 1,680 ODs in the UK
 - Cited by 50-60% of ODs

PMID: 21205271

Clinical Skills

- How well are ODs able to identify signs of glaucoma?
 - How good are they at detecting abnormality (sensitivity) and normality (specificity)
- Abrams (1994)- USA


(PMID: 7936564)

Compare interpretation of 75 stereo ONH photos

ONH Assessment	OD (n = 6)	OMD (n = 6)	Residents (n = 6)
Sensitivity	56%	78%	78%
Specificity	53%	60%	47%

Conclusion: OMDs are more sensitive at detecting glc. All had poor specificity (<u>high false positives</u>)

Clinical Skills

Assessment of 110 stereophotos by 208 ODs and 243 OMDs to detect glaucoma. **ODs correctly** identified more glaucoma cases than OMDs, but also had more false-positives (Hadwin, 2013)

PMID: 23634792

Clinical Skills

- How well are ODs able to identify signs of glaucoma?
 - Studies indicate that ODs perform at least as well as general OMDs
 - Optometrists tend to favor sensitivity over specificity in their diagnostic evaluation
 - Conclusion: Optometric clinical skills are probably
 <u>not a major factor</u> in the high false positive
 glaucoma diagnosis rate

Excessive Reliance on Technology

- "Red Disease" vs Glaucoma
 - Growing reliance on technology to determine whether a patient is normal (imaging, perimetry)
 - When an instrument has documented an apparent abnormality, doctors are unlikely to ignore it
 - Rigorous highly sensitive screening tests can lower overall referral **RNFL** Deviation Map OD 05 accuracy as it Average RNFL Thickness 77 µm 80 um produces a high 58% RNFL Symmetry 0.88 mm² 0.77 mm² Rim Area number of false 1.97 mm² 2.01 mm² Disc Area positive results Average C/D Ratio 0.75 0.80

Disc Center (0.09,0.09) mm

0.80

0.472 mm³

Vertical C/D Ratio

Cup Volume

0.78

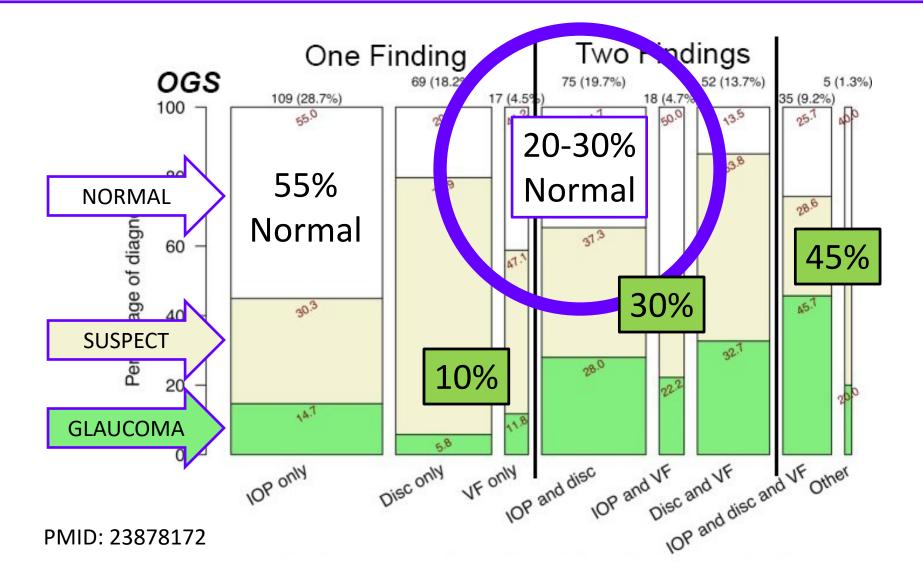
0.616 mm²

 There is a great deal of overlap between findings that are associated with glaucoma and those that occur in the normal population

– Examples: Cup-Disc ratio, IOP, ISNT rule

- A comprehensive eye exam will likely uncover many normal individuals with at least 1 suspicious finding
- Patients with 2 or more suspicious findings are more likely to have glaucoma

• Ratnarajan – UK



(PMID: 23878172)

- Retrospective analysis of 1,086 glaucoma referrals from ODs, comparing those with special training in glaucoma ("optometric glaucoma specialists") to those without

	Non-OGS	OGS
Total referrals	703	380
False positive rate	473 (67.3%)	134 (35.3%)
Dx with glaucoma	66 (9.4%)	81 (21.3%)
P <0.0001		0001

OGS's had 23% more glaucomas detected with 45% fewer referrals

- Ratnarajan UK

- Conclusions
 - Multiple criterion referrals resulted in a higher percentage of patients being diagnosed with glaucoma
- Bottom Line...
 - IOP is a very poor indicator of glaucoma
 - Glaucoma more likely to be present in patients with >1 abnormal finding

Why is the False Positive Rate so High?

- 1. Low prevalence of glaucoma
- 2. Medicolegal pressure
- 3. Financial and time constraints
- 4. Clinical skills required for glaucoma diagnosis
- 5. Excessive reliance on technology
- 6. Clinical decisions made on the basis of a single abnormal finding

All of the above appear to contribute

How to Minimize False Positive Diagnosis of Glaucoma

- 1. Glaucoma diagnostic skills improve with training and experience
 - General OD has similar skill level as general OMD
 - ODs with more glaucoma experience improve in specificity and overall diagnostic accuracy
- 2. Balance sensitivity and specificity
 - Beware of "Red Disease"
 - Do not start treatment until confident of the diagnosis
- 3. Search for multiple signs of the disease
 - IOP alone has extremely high false positive rate
 - ONH appearance has highest specificity

Thank you!

