Sleep Apned & the Eye

Rick Trevino, OD, FAAO Rosenberg School of Optometry University of the Incarnate Word

Online Resources

Lecture Notes http://richardtrevino.net Email me rctrevin@uiwtx.edu Disclosures None

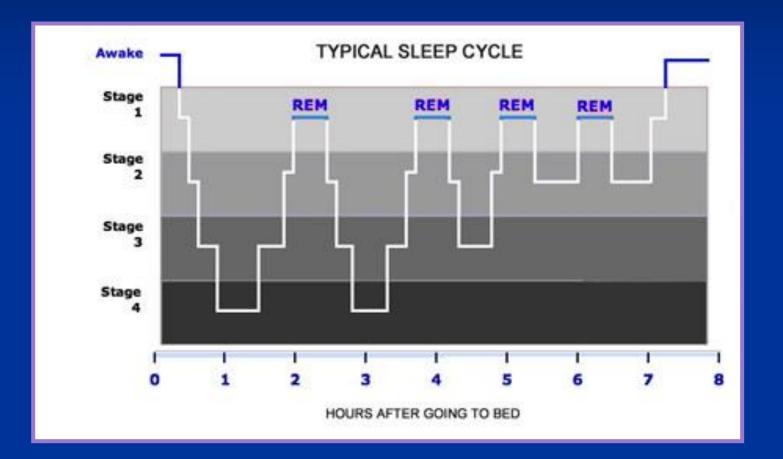
Sleep Apnea & the Eye

Sleep Apnea

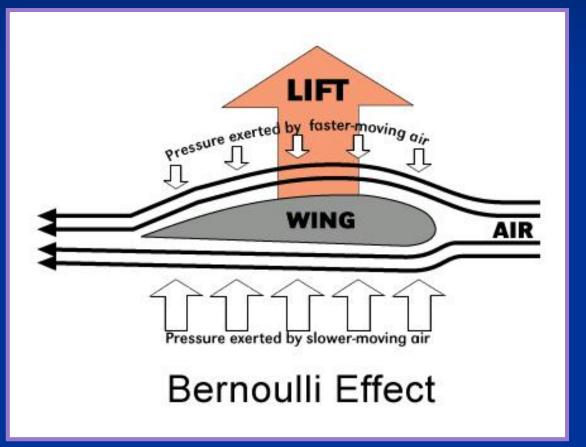
- What it is
- How it's diagnosed & treated

Ocular Manifestations

- Asthenopia
- CPAP-assoc red eye
- Floppy eyelid syndrome
- Retinal Conditions
- NAION
- Papilledema
- Normal tension glaucoma

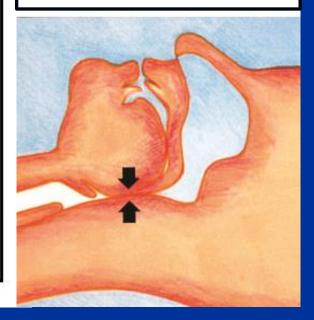

Sleep Disorders

OSA is the "most physiologically disruptive and dangerous of the sleep-related disorders."


- Sleep apnea
- Insomnia
- Narcolepsy
- Restless leg syndrome
- Parasomnias
- Circadian disorders
- Drug side effects
- Shift work

Sleep Architecture

Obstructive Sleep Apnea


Any Condition that Causes or Contributes to Upper Airway Narrowing is a Risk Factor for OSA Obesity **Enlarged Tonsils** Anatomical Malformations Neoplasms Edema of the pharynx Lymphoid Hypertrophy Pharyngeal Muscle Weakness Dyscoordination of **Respiratory Muscles**

Obstructive Sleep Apnea Polysomnography (PSG)

Obstructive Apnea mannt Mannam EEG Arousal Airflow Effort Rib cage Effort Abdomen Effort Esophageal pressure (cm of water) Oxygen 100 75 saturation (%) 50 10 sec

OSA Grading Scale

Mild: 5-15 episodes/hr Mod: 15-30 episodes/hr Severe: >30 episodes/hr

Obstructive Sleep Apnea

<u>Clinical Characteristics</u>

Excessive daytime sleepiness

Most common symptom

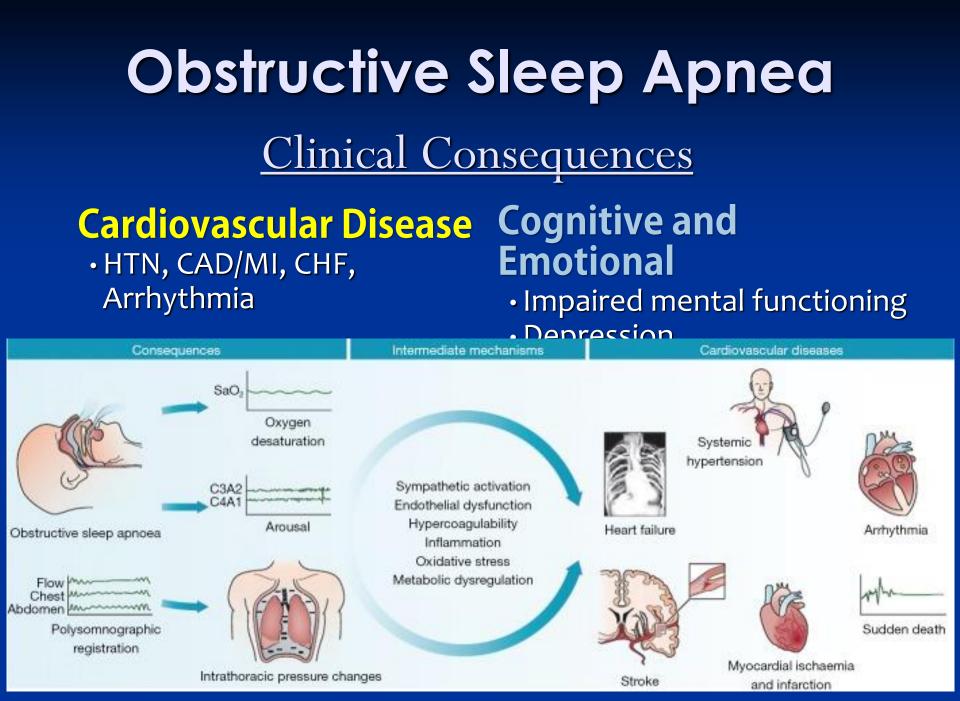
Disruptive snoring

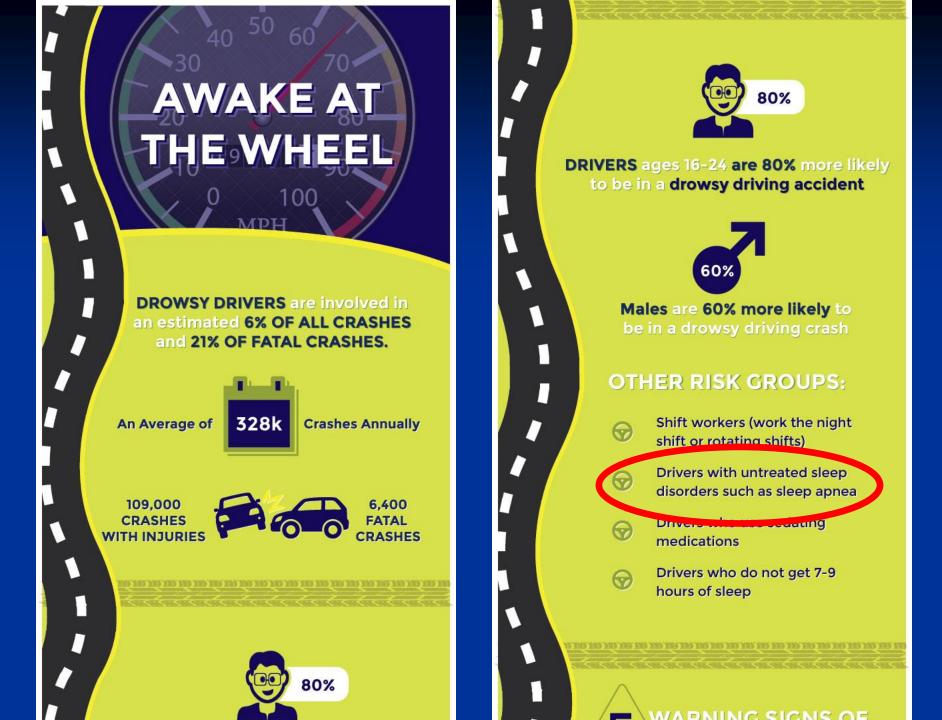
"Do you have a snoring problem?"

Apneic events witnessed by bed partner

 Disruptive snoring + witnessed apneas: 94% specificity

Obesity


30% of pts with a BMI > 30 have
OSA, and 50% of pts with a BMI
> 40 have OSA.


Neck circumference

- ≥40 cm had a sensitivity of 61% and a specificity of 93% for OSA
- Correlates better than BMI

Male

- 2-3x more common than female
- Family history of OSA
- Relatives have 2-4 fold Λ risk

Obstructive Sleep Apnea Clinical Evaluation

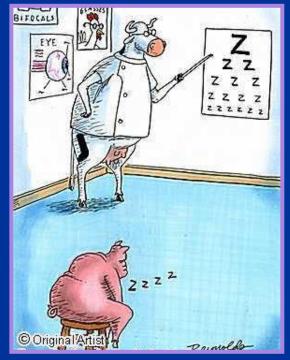
History

- Sleepiness assessment
- Disruptive snoring
- Witnessed apneas

Physical

- Obesity
- Neck circumference
- Throat/Mouth exam

PSG

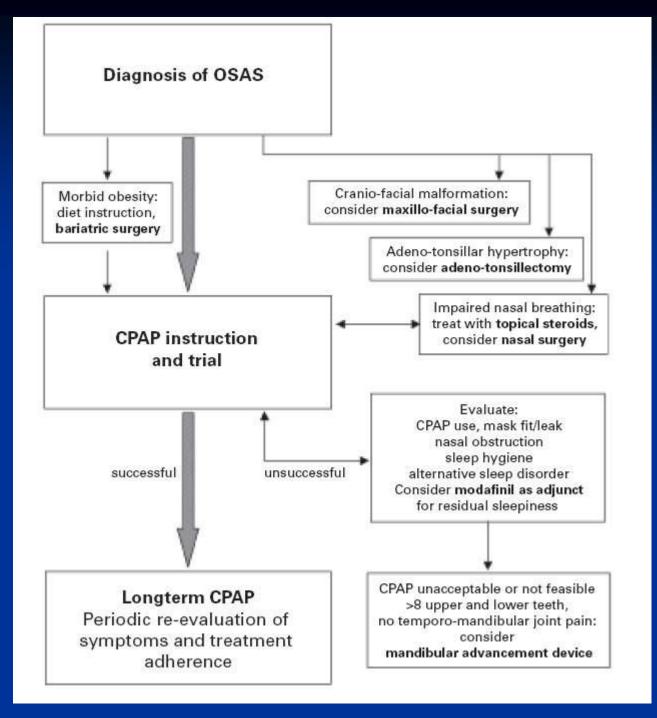

Gold Standard

Respiratory Disturbance Index; Apnea/Hypopnea Index

Obstructive Sleep Apnea Epworth Sleepiness Scale

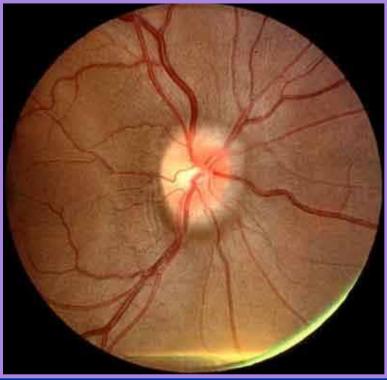
How likely are you to doze off or fall asleep in the following situations? o = No chance, 1 = Slight chance, 2 = Moderate chance, 3 = High Chance

- 1. Sitting and reading
- 2. Watching TV
- 3. Sitting inactive in a public place (theater, meeting)
- 4. As a passenger in a car for an hour without a break
- 5. Lying down to rest in the afternoon when circumstances permit
- 6. Sitting and talking to someone
- 7. Sitting quietly after a lunch without alcohol
- 8. In a car, while stopped for a few minutes in traffic



Obstructive Sleep Apnea Treatment Options

- Behavioral: Weight loss, EtOH avoidance, nonsupine position
- Positive Airway Pressure: CPAP, Provent, others
- Mandibular advancement device
- Surgery: UPPP, Tonsillectomy, Tracheostomy



OSA & the Eye Ocular Manifestations of Sleep Apnea

- Asthenopia
- CPAP-assoc Red Eye
- Floppy Eyelid Syndrome
- Diabetic Retinopathy
- NAION
- Papilledema
- Normal Tension Glaucoma



Asthenopia

Common OSA-associated asthenopic symptoms

Unexplained symptoms of blur

- Trouble "focusing eyes"
- Vision is 20/20 but the patient is c/o blur
- Misinterpreting what is seen
 - Incorrect recording or copying
 - Work-related errors
- Eye strain and/or fatigue
- Headaches
 - Worse in the morning

Asthenopia

If OSA is in the medical history

- Ask about sleepiness or fatigue
- Possibly due to poor compliance or residual fatigue
- Offer supportive management (eg. CPAP compliance)

If OSA is not in the medical history

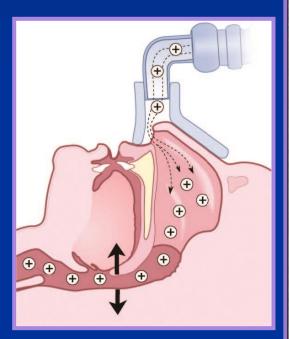
- High index of suspicion whenever the chief complaint is fatigue or asthenopia
- Especially if habitus is Pickwickian
- Be prepared to screen for sleepiness

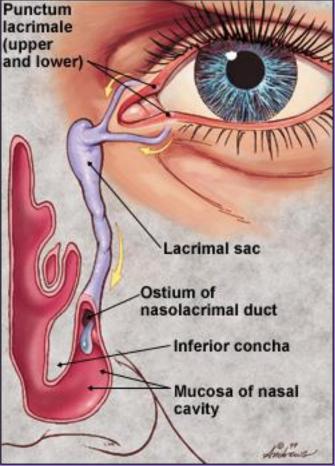
CPAP-associated Red Eye

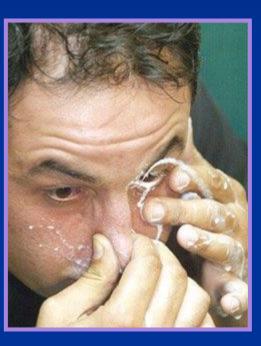
Clinical Problems

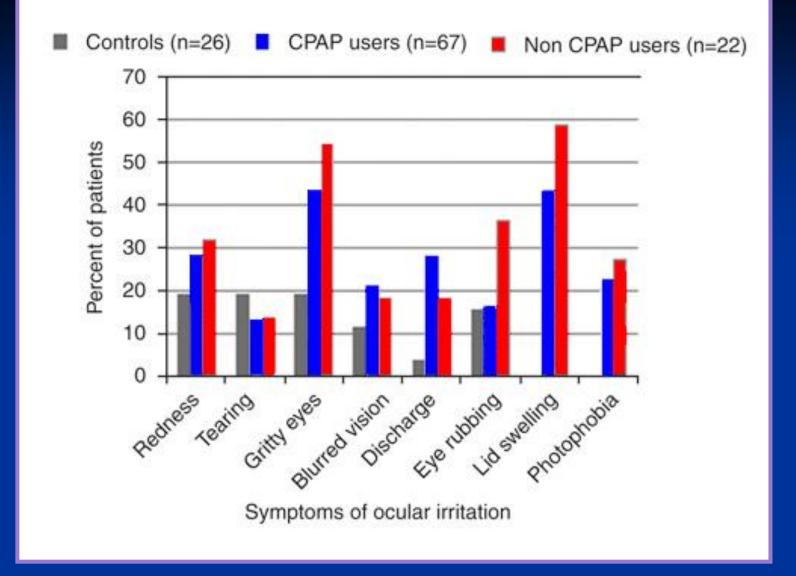
- Dry eye syndrome
- EXW CL intolerance
- Recurrent corneal erosion
- Infectious conjunctivitis

Causes

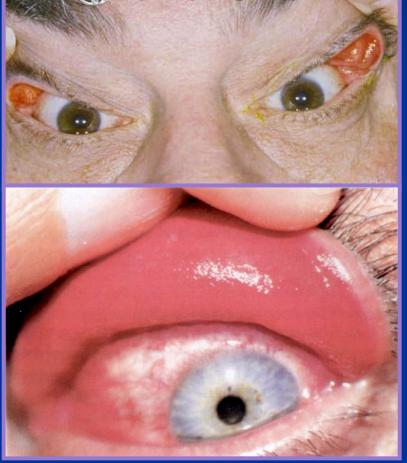

- Air leaks
- Retrograde air flow thru nasolacrimal apparatus (Saline bubble test)


Treatment


- Lubricating ointments HS, punctal plugs
- CPAP refitting: adjust headgear and pressure
- Intranasal surgery



CPAP-associated Red Eye


Persons with OSA generally have greater ocular discomfort than controls, but is greatest among persons that are noncompliant with CPAP

Clinical Characteristics Eyelid hyperlaxity

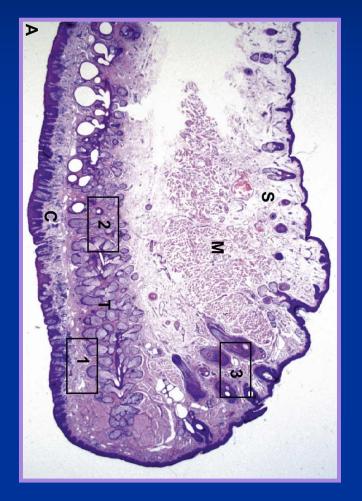
- Rubbery, easily everted upper eyelids
- Eyelash ptosis with loss of parallelism

Papillary conjunctivitis

- Chronic ocular irritation, worse upon waking
- SPK, mucoid discharge common
- Rubbing on pillow case

Eyelash ptosis

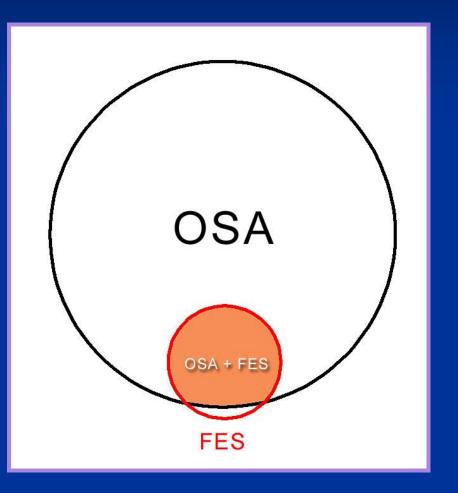
- Downward displacement of eyelashes
- Lashes may point in various directions
- Loss of parallelism
- Pts may trim with scissors



Pathogenesis

- Loss of elastic fibers in tarsus
- May be caused by repeated mechanical trauma, possibly eye rubbing or sleeping with the face buried in the pillow
- FES also highly associated with keratoconus, reinforcing suspected role of mechanical trauma
- Pedrotti (2018): OSA is 10-20x more common among pts with KCN

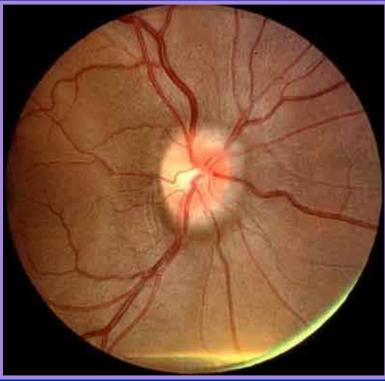
PMID: 24141141, 29319596


Treatment

- CPAP therapy
 - Treatment of OSA can improve sxs
- Protect eye during sleep
 - Ointments HS
 - Patching, taping, sleep mask
- Surgery is considered the definitive treatment
 - 25-50% failure rate within 2yrs

Relation to OSA

- About 10-20% of OSA pts have FES
- 40% of pts with severe OSA have FES
- 96% pts with FES have OSA
- FES strongly associated with OSA even after adjusting for weight


Relation to Glaucoma

- FES and glaucoma are both associated with OSA
- FES may serve as a marker for those patients with OSA that also have glaucoma
- In a recent study, 5% of OSA pts without FES had glaucoma, compared 23% of those with FES

OSA & the Eye Ocular Manifestations of Sleep Apnea

- Asthenopia
- CPAP-assoc Red Eye
- Floppy Eyelid Syndrome
- Retinal Conditions
- NAION
- Papilledema
- Normal Tension Glaucoma

Diabetic Retinopathy

OSA increases risk of progression of retinopathy

- Diabetic retinopathy is more common and severe in patients with OSA, independent of other risk factors
- Risk of progression associated with severity of OSA
- CPAP may slow progression of diabetic retinopathy by minimizing nocturnal hypoxia

 Diabetics with OSA should be screened for retinopathy and encouraged to be compliant with CPAP

PMID: 20381785, 28937527

Other Retinal Disorders Associated with OSA

Central Serous Chorioretinopathy

 OSA may be a risk factor for CSCR, and treatment of OSA has been reported to hasten recovery of CSCR

Central Retinal Vein Occlusion

 OSA may be a risk factor for CRVO, and has been associated with bilateral simultaneous CRVO

Anti-VEGF treatment failure

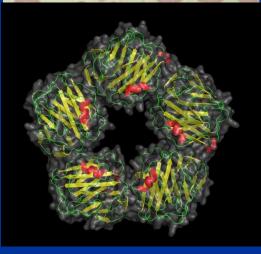
 OSA has been associated with Avastin treatment failure of AMD and diabetic macular edema

PMID: 31800457, 30188014, 26841211

Clinical Characteristics

- Most common acute optic neuropathy in pts >50yo
- Sudden painless visual loss, usually upon awaking
- Nerve fiber bundle VF defects
- Diffuse or sectoral disc edema
- Disc at risk: small, crowded
 - Mean C/D = 0.2
 - All ≤ 0.4

Pathophysiology


- Idiopathic ischemic process
 - Disorder of posterior ciliary artery circulation
 - Transient poor circulation in the ONH
 - **Trigger Event:** Fall in blood pressure below a critical level?
 - There is no actual blockage of the posterior ciliary arteries
- Cascade Effect
 - Mechanical crowding caused by small crowded disc
 - Ischemia \rightarrow Swelling \rightarrow Compression \rightarrow Ischemia

http://webeye.ophth.uiowa.edu/dept/AION/Index.htm

Diagnosis: Must exclude GCA in every case

- ESR
- C-Reactive Protein
 - Levels increase in presence of inflammation
 - Upper limit normal does not rise with age
- Platelets
 - Secondary thrombocytosis due to chronic inflammation

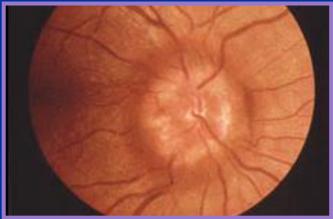
Treatment

- Aspirin
 - Decreases incidence in fellow eye at 2 yrs, but not at 5 yrs
- Surgical decompression
 - No benefit (Ischemic Optic Neuropathy Decompression Trial)
- Control of predisposing systemic disease
 - May slow progression or reduce incidence in fellow eye
 - Hypertension, Diabetes, Hyperlipidemia, OSA
- Avoid phosphodiesterase 5 inhibitors (Viagra, Cialis, etc)
 - May increase risk of NAION in fellow eye

Relation to OSA

NAION Patients with OSA

	Case	9	Contr	lo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	M-H. Random, 95% CI
Arda et al 2013	17	20	13	20	17.9%	3.05 [0.66, 14.14]	
Bilgin et al 2013	15	27	6	27	20.7%	4.38 [1.34, 14.28]	
Li et al 2007	22	73	13	73	23.7%	1.99 [0.91, 4.35]	
Mojon et al 2002	12	17	3	17	17.2%	11.20 [2.20, 56.92]	
Palombi et al 2006	24	27	1011	5615	20.5%	36.43 [10.95, 121.22]	
Total (95% CI)		164		5752	100.0%	6.18 [2.00, 19.11]	•
Total events	90		1046			6 32 83	
Heterogeneity: Tau ² =	1.24; Chi ²	= 17.4	0, df = 4 ((P = 0.0))02); l ² = 7	7%	
Test for overall effect: Z = 3.16 (P = 0.002)					(Wu, 2015)	0.01 0.1 1 10 100 Favours Case Favours Contro	


- OSA may be the systemic disorder most frequently associated with NAION – OSA pts have 6x higher risk
- Every patient newly diagnosed with NAION should be tested for OSA

Papilledema

Clinical Characteristics

- Disc swelling associated with increased ICP
- Symptoms of elevated ICP: Headache, tinnitus, TOV
- Chronic papilledema (months) may lead to optic atrophy and vision loss

Papilledema

Work-up

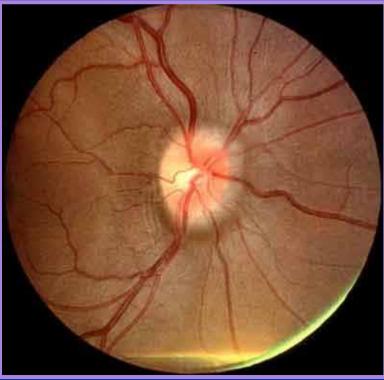
- Urgent MRI or CT scan
- Lumbar puncture if imaging normal

Idiopathic Intracranial Hypertension

- "Pseudotumor cerebri"
- Syndrome of elevated ICP, papilledema, normal MRI/CT, normal CSF

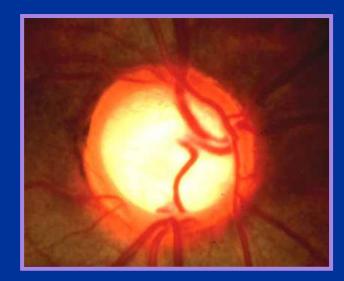
- Secondary pseudotumor cerebri syndromes with an identifiable cause (venous sinus thrombosis, vitamin A toxicity, COPD, OSA)
- Tx: Diamox 250mg po QID , Underlying cause if known

Papilledema


Relation to OSA

- Stein (2011)
 - Reviewed 2.3 million insurance company billing records
 - Persons with OSA have 30% to 100% increased risk of developing papilledema
- Parvin (2000)
 - 4 pts with unexplained papilledema that resolved with successful treatment of OSA
 - ICP may be normal during the day but elevated at night

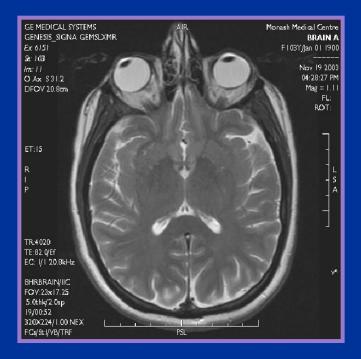
 - Hypercapnia-induced cerebral vasodilatation elevates ICP


OSA & the Eye Ocular Manifestations of Sleep Apnea

- Asthenopia
- CPAP-assoc Red Eye
- Floppy Eyelid Syndrome
- Retinal Conditions
- NAION
- Papilledema
- Normal Tension Glaucoma

Clinical Characteristics

- Probably a variant of POAG
- IOP is never documented above 21 mmHg
- Peripapillary hemorrhages may be more frequent
- Peripapillary atrophy may be more marked
- VF defects tend to be deeper and more localized


Pathophysiology

- IOP-independent factors predominate
 - Vascular insufficiency: CVD, HTN
 - Vasospasm: migraine, Raynaud's phenomenon
 - Translaminar pressure difference: low ICP

Diagnosis

- R/O other glaucomas
 - POAG with diurnal IOP fluctuation
 - IOP normalization (Burnt-out glaucoma, steroids)
- R/O other optic neuropathies
 - NAION, space-occupying lesions, congenital anomalies
 - When to order neuroimaging:
 - Younger age (<50 yrs)
 - Reduced VA (< 20/40)
 - Vertically aligned VF defects
 - Neuroretinal rim pallor

1%

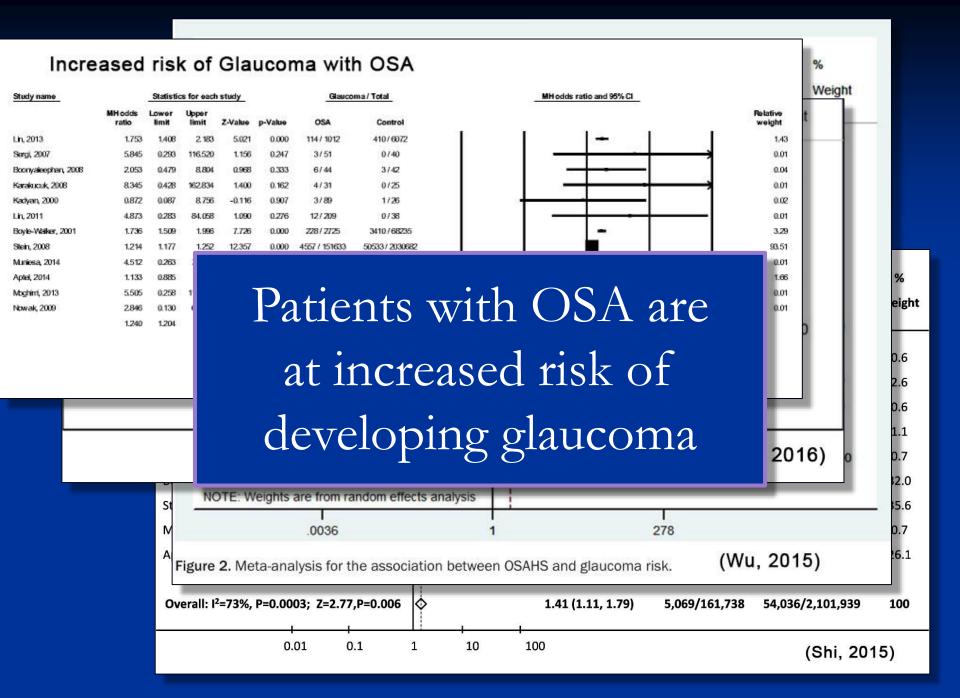
17%

Glaucoma Patients with OSA

Girkin (2006) POAG Roberts (2009) POAG Mojon (2000) POAG Khandgave (2013) NTG POAG Balbay (2014) Bilgin (2014) NTG Blumen (2010) POAG

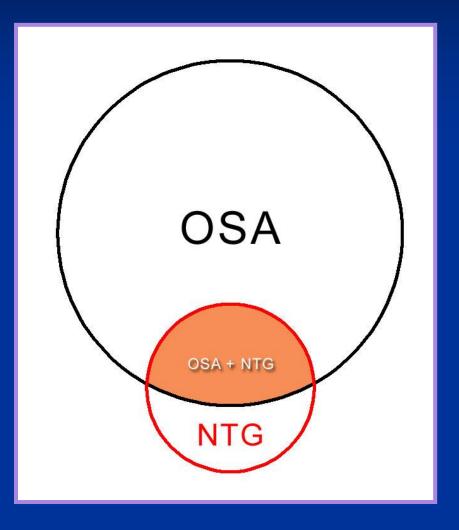
NTG

NTG

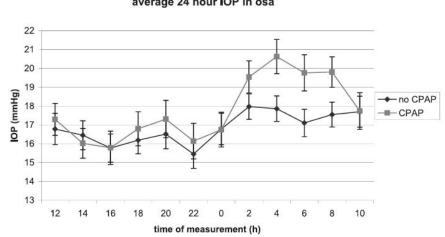

Marcus (2001)

Mojon (2002)

pop estimate of 10-20% 20% 23% 33% 42% 48% 57% 50-60% (varies with age)


Greater than general

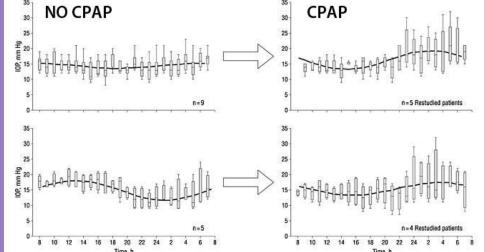
OSA Patients with Glaucoma					
		POAG	NTG		
	Geyer (2003)	1%	1%	NTG is at least	-
	Kadyan (2010)	2%		as common as	
	Karakuck (2008)	3%	10%	POAG in this	
	Aptel (2014)	4%		patient populat	ion
	Mojon (1999)	4%	3%		
	Boonyaleephan (2008)	5%	9%		
	Hashim (2014)	5%	15%		
	Boyle-Walker (2011)	8%		Greater than general	
	Bendel (2008)	27%		pop estimate of 1.5-3	3%
	Sergi (2007)		6%		
	Lin (2010)		6%		


Relation to OSA

- 5%-10% of OSA patients have NTG (<3% general pop)
- Up to 50% of NTG patients have OSA
- Treatment of OSA may help stabilize NTG (Kremmer, 2003) and improve VF performance (Sebastian, 2006)

Normal Tension Glaucoma CPAP Increases IOP • Kiekens (2008)

- Diurnal IOP measured with and without CPAP
- Average IOP and diurnal fluctuation higher with CPAP


- Speculate that CPAP elevates intrathoracic pressure, leading to higher central venous pressure, and ultimately higher IOP
- Recommend regular screening of VF and the optic disc for all patients with OSA, especially those treated with CPAP

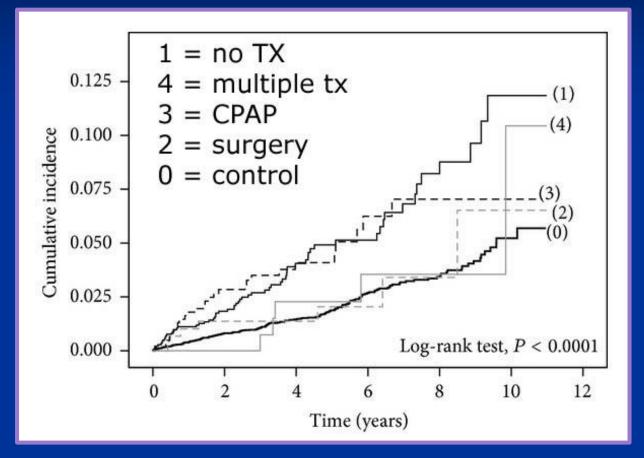
CPAP and IOP

CPAP Increases IOP

• Pepin (2010)

- Diurnal IOP measured with and without CPAP
- CPAP caused a significant increase in nocturnal IOP

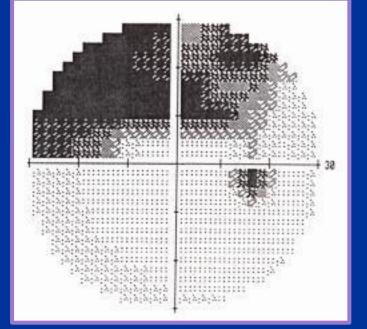
- Speculate that some effects of untreated OSA may result in decreased nocturnal IOP and these are normalized by use of CPAP
- Concludes that IOP changes induced by CPAP are explained by restoring normal IOP rhythm rather than by a deleterious effect of the device


CPAP and IOP • Cohen (2015)

- CPAP not associated with nocturnal rise in IOP
- Ulusoy (2015)
 - Compared glaucoma prevalence among OSA patients who did and did not use CPAP
 - No difference in glaucoma prevalence with CPAP use

CPAP and IOP

Chen (2014): OSA treated with CPAP have higher rates of glaucoma than OSA treated with surgery



OSA May Cause NFL Loss Without Glaucoma

- NFL thinning may represent preclinical NTG
- This "silent optic neuropathy" may evolve into NTG in some patients

OSA May Cause VF Loss Without Glaucoma

 VF loss may occur due to optic nerve damage caused by <u>cerebral</u> <u>ischemia and intermittent</u> <u>ICP elevation</u>

PMID: 23636560, 29271421

- **Conclusions & Recommendations**
 - Persons with OSA should be screened for glaucoma
 - Risk of glaucoma is correlated with severity of OSA
 - Patients with NTG should be screened or at least questioned about OSA
 - Treatment of uncontrolled OSA may help stabilize glaucoma and improve VF performance
 - Initiation of CPAP therapy may increase nocturnal IOP
 - The clinical significance of this is unknown

Key Points

- OSA is strongly associated with many ocular disorders
- Include OSA in your medical history
- FES is a marker for severe OSA and is a risk factor for glaucoma
- Screen for OSA in patients with NAION or NTG

Thank You!

